This paper considers three dichotomy concepts (exponential dichotomy, uniform
exponential dichotomy and strong exponential dichotomy) in the general context
of non-invertible evolution operators in Banach spaces. Connections between
these concepts are illustrated. Using the notion of Green function, we give
necessary conditions and sufficient ones for strong exponential dichotomy. Some
illustrative examples are presented to prove that the converse of some
implication type theorems are not valid