research

Linguistic Geometries for Unsupervised Dimensionality Reduction

Abstract

Text documents are complex high dimensional objects. To effectively visualize such data it is important to reduce its dimensionality and visualize the low dimensional embedding as a 2-D or 3-D scatter plot. In this paper we explore dimensionality reduction methods that draw upon domain knowledge in order to achieve a better low dimensional embedding and visualization of documents. We consider the use of geometries specified manually by an expert, geometries derived automatically from corpus statistics, and geometries computed from linguistic resources.Comment: 13 pages, 15 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions