1,890 research outputs found

    Jeans instability of a galactic disk embedded in a live dark halo

    Full text link
    We investigate the Jeans instability of a galactic disk embedded in a dynamically responsive dark halo. It is shown that the disk-halo system becomes nominally Jeans unstable. On small scales the instability is suppressed, if the Toomre stability index Q_T is higher than a certain threshold, but on large scales the Jeans instability sets invariably in. However, using a simple self-consistent disk-halo model it is demonstrated that this occurs on scales which are much larger than the system so that this is indeed only a nominal effect. From a practical point of view the Jeans instability of galactic disks is not affected by a live dark halo.Comment: 3 pages, 1 figure, accepted by Astron. Astrophy

    Scientific management and implementation of the geophysical fluid flow cell for Spacelab missions

    Get PDF
    Scientific support for the spherical convection experiment to be flown on Spacelab 3 was developed. This experiment takes advantage of the zero gravity environment of the orbiting space laboratory to conduct fundamental fluid flow studies concerned with thermally driven motions inside a rotating spherical shell with radial gravity. Such a system is a laboratory analog of large scale atmospheric and solar circulations. The radial body force necessary to model gravity correctly is obtained by using dielectric polarization forces in a radially varying electric field to produce radial accelerations proportional to temperature. This experiment will answer fundamental questions concerned with establishing the preferred modes of large scale motion in planetary and stellar atmospheres

    Theoretical and experimental studies in support of the geophysical fluid flow experiment

    Get PDF
    Computer programming was completed for digital acquisition of temperature and velocity data generated by the Geophysical Fluid Flow Cell (GFFC) during the upcoming Spacelab 3 mission. A set of scenarios was developed which covers basic electro-hydrodynamic instability, highly supercritical convection with isothermal boundaries, convection with imposed thermal forcing, and some stably stratified runs to look at large-scale thermohaline ocean circulations. The extent to which the GFFC experimental results apply to more complicated circumstances within the Sun or giant planets was assessed

    Simulations of core convection and resulting dynamo action in rotating A-type stars

    Full text link
    We present the results of 3--D nonlinear simulations of magnetic dynamo action by core convection within A-type stars of 2 solar masses, at a range of rotation rates. We consider the inner 30% by radius of such stars, with the spherical domain thereby encompassing the convective core and a portion of the surrounding radiative envelope. The compressible Navier-Stokes equations, subject to the anelastic approximation, are solved to examine highly nonlinear flows that span multiple scale heights, exhibit intricate time dependence, and admit magnetic dynamo action. Small initial seed magnetic fields are found to be amplified greatly by the convective and zonal flows. The central columns of strikingly slow rotation found in some of our progenitor hydrodynamic simulations continue to be realized in some simulations to a lesser degree, with such differential rotation arising from the redistribution of angular momentum by the nonlinear convection and magnetic fields. We assess the properties of the magnetic fields thus generated, the extent of convective penetration, the magnitude of the differential rotation, and the excitation of gravity waves within the radiative envelope.Comment: Talk at IAU Symposium 224: The A-Star Puzzle. 6 pages, 3 figures, 2 in color, compressed with appreciable loss of qualit

    Laboratory and theoretical models of planetary-scale instabilities and waves

    Get PDF
    The continuous low-g environment of the orbiting space shuttle provided a setting for conducting geophysical fluid model experiments with a completely consistent representation of sphericity and the resultant radial gravity found on astrogeophysical objects. This is possible because in zero gravity an experiment can be constructed that has its own radial buoyancy forces. The dielectric forces in a liquid, which are linearly dependent on fluid temperature, give rise to an effectively radial buoyancy force when a radial electrostatic field is applied. The Geophysical Fluid Flow Cell (GFFC) experiment is an implementation of this idea in which fluid is contained between two rotating hemispheres that are differentially heated and stressed with a large ac voltage. The GFFC flew on Spacelab 3 in May 1985. Data in the form of global Schlieren images of convective patterns were obtained for a large variety of configurations. These included situations of rapid rotation (large Taylor numbers), low rotation, large and small thermal forcing, and situations with applied meridional temperature gradients. The analysis and interpretation of the GFFC-85 data are being conducted. Improvements were developed to the GFFC instrument that will allow for real-time (TV) display of convection data and for near-real-time interactive experiments. These experiments, on the transition to global turbulence, the breakdown of rapidly rotating convective planforms and other phenomena, are scheduled to be carried out on the International Microgravity Laboratory (IML-1) aboard the shuttle in June 1990

    The dynamics of spiral arms in pure stellar disks

    Full text link
    It has been believed that spirals in pure stellar disks, especially the ones spontaneously formed, decay in several galactic rotations due to the increase of stellar velocity dispersions. Therefore, some cooling mechanism, for example dissipational effects of the interstellar medium, was assumed to be necessary to keep the spiral arms. Here we show that stellar disks can maintain spiral features for several tens of rotations without the help of cooling, using a series of high-resolution three-dimensional NN-body simulations of pure stellar disks. We found that if the number of particles is sufficiently large, e.g., 3×1063\times 10^6, multi-arm spirals developed in an isolated disk can survive for more than 10 Gyrs. We confirmed that there is a self-regulating mechanism that maintains the amplitude of the spiral arms. Spiral arms increase Toomre's QQ of the disk, and the heating rate correlates with the squared amplitude of the spirals. Since the amplitude itself is limited by the value of QQ, this makes the dynamical heating less effective in the later phase of evolution. A simple analytical argument suggests that the heating is caused by gravitational scattering of stars by spiral arms, and that the self-regulating mechanism in pure-stellar disks can effectively maintain spiral arms on a cosmological timescale. In the case of a smaller number of particles, e.g., 3×1053\times 10^5, spiral arms grow faster in the beginning of the simulation (while QQ is small) and they cause a rapid increase of QQ. As a result, the spiral arms become faint in several Gyrs.Comment: 18 pages, 19 figures, accepted for Ap

    Convection and dynamo action in B stars

    Full text link
    Main-sequence massive stars possess convective cores that likely harbor strong dynamo action. To assess the role of core convection in building magnetic fields within these stars, we employ the 3-D anelastic spherical harmonic (ASH) code to model turbulent dynamics within a 10 solar mass main-sequence (MS) B-type star rotating at 4 times the solar rate. We find that strong (900 kG) magnetic fields arise within the turbulence of the core and penetrate into the stably stratified radiative zone. These fields exhibit complex, time-dependent behavior including reversals in magnetic polarity and shifts between which hemisphere dominates the total magnetic energy.Comment: 2 pages, 1 figure; IAU symposium 271, Astrophysical Dynamics: From Galaxies to Star

    Density waves in the shearing sheet IV. Interaction with a live dark halo

    Full text link
    It is shown that if the self-gravitating shearing sheet, a model of a patch of a galactic disk, is embedded in a live dark halo, this has a strong effect on the dynamics of density waves in the sheet. I describe how the density waves and the halo interact via halo particles either on orbits in resonance with the wave or on non-resonant orbits. Contrary to expectation the presence of the halo leads to a very considerable enhancement of the amplitudes of the density waves in the shearing sheet. This effect appears to be the equivalent of the recently reported enhanced growth of bars in numerically simulated stellar disks embedded in live dark halos. Finally I discuss the transfer of linear momentum from a density wave in the sheet to the halo and show that it is mediated only by halo particles on resonant orbits.Comment: 8 pages, 4 figures, accepted by Astron. Astrophy
    • …
    corecore