research

Refactorizing NRQCD short-distance coefficients in exclusive quarkonium production

Abstract

In a typical exclusive quarkonium production process, when the center-of-mass energy, s\sqrt{s}, is much greater than the heavy quark mass mm, large kinematic logarithms of s/m2s/m^2 will unavoidably arise at each order of perturbative expansion in the short-distance coefficients of the nonrelativistic QCD (NRQCD) factorization formalism, which may potentially harm the perturbative expansion. This symptom reflects that the hard regime in NRQCD factorization is too coarse and should be further factorized. We suggest that this regime can be further separated into "hard" and "collinear" degrees of freedom, so that the familiar light-cone approach can be employed to reproduce the NRQCD matching coefficients at the zeroth order of m2/sm^2/s and order by order in αs\alpha_s. Taking two simple processes, exclusive ηb+γ\eta_b+\gamma production in e+e−e^+ e^- annihilation and Higgs boson radiative decay into Υ\Upsilon, as examples, we illustrate how the leading logarithms of s/m2s/m^2 in the NRQCD matching coefficients are identified and summed to all orders in αs\alpha_s with the aid of Brodsky-Lepage evolution equation.Comment: v2, 17 pages, 2 figures; presentation improved, one important reference added, and Note adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019