We consider gas at densities appropriate to protoplanetary disks and
calculate its ability to cool due to line radiation emitted by H2O molecules
within the gas. Our work follows that of Neufeld & Kaufman (1993; ApJ, 418,
263), expanding on their work in several key aspects, including use of a much
expanded line database, an improved escape probability formulism, and the
inclusion of dust grains, which can absorb line photons. Although the escape
probabilities formally depend on a complicated combination of optical depth in
the lines and in the dust grains, we show that the cooling rate including dust
is well approximated by the dust-free cooling rate multiplied by a simple
function of the dust optical depth. We apply the resultant cooling rate of a
dust-gas mixture to the case of a solar nebula shock pertinent to the formation
of chondrules, millimeter-sized melt droplets found in meteorites. Our aim is
to assess whether line cooling can be neglected in chondrule-forming shocks or
if it must be included. We find that for typical parameters, H2O line cooling
shuts off a few minutes past the shock front; line photons that might otherwise
escape the shocked region and cool the gas will be absorbed by dust grains.
During the first minute or so past the shock, however, line photons will cool
the gas at rates ~ 10,000 K/hr, dropping the temperature of the gas (and most
likely the chondrules within the gas) by several hundred K. Inclusion of H2O
line cooling therefore must be included in models of chondrule formation by
nebular shocks.Comment: Accepted for publication in The Astrophysical Journa