We consider the role of deuterium as a potential marker of location and
ambient conditions during the formation of small bodies in our Solar system. We
concentrate in particular on the formation of the regular icy satellites of
Jupiter and the other giant planets, but include a discussion of the
implications for the Trojan asteroids and the irregular satellites. We examine
in detail the formation of regular planetary satellites within the paradigm of
a circum-Jovian subnebula. Particular attention is paid to the two extreme
potential subnebulae - "hot" and "cold". In particular, we show that, for the
case of the "hot" subnebula model, the D:H ratio in water ice measured from the
regular satellites would be expected to be near-Solar. In contrast, satellites
which formed in a "cold" subnebula would be expected to display a D:H ratio
that is distinctly over-Solar. We then compare the results obtained with the
enrichment regimes which could be expected for other families of icy small
bodies in the outer Solar system - the Trojan asteroids and the irregular
satellites. In doing so, we demonstrate how measurements by Laplace, the James
Webb Space Telescope, HERSCHEL and ALMA will play an important role in
determining the true formation locations and mechanisms of these objects.Comment: Accepted and shortly to appear in Planetary and Space Science; 11
pages with 5 figure