We present a framework for analyzing weak gravitational lensing survey data,
including lensing and source-density observables, plus spectroscopic redshift
calibration data. All two-point observables are predicted in terms of
parameters of a perturbed Robertson-Walker metric, making the framework
independent of the models for gravity, dark energy, or galaxy properties. For
Gaussian fluctuations the 2-point model determines the survey likelihood
function and allows Fisher-matrix forecasting. The framework includes nuisance
terms for the major systematic errors: shear measurement errors, magnification
bias and redshift calibration errors, intrinsic galaxy alignments, and
inaccurate theoretical predictions. We propose flexible parameterizations of
the many nuisance parameters related to galaxy bias and intrinsic alignment.
For the first time we can integrate many different observables and systematic
errors into a single analysis. As a first application of this framework, we
demonstrate that: uncertainties in power-spectrum theory cause very minor
degradation to cosmological information content; nearly all useful information
(excepting baryon oscillations) is extracted with ~3 bins per decade of angular
scale; and the rate at which galaxy bias varies with redshift substantially
influences the strength of cosmological inference. The framework will permit
careful study of the interplay between numerous observables, systematic errors,
and spectroscopic calibration data for large weak-lensing surveys.Comment: submitted to Ap