The new trend of the DRAM design is to characterize by its reliability, delay, low power dissipation, and area. This paper dealt with the design of 1-bit DRAM and efficient implementation of a sense amplifier. The proposed 1-bit DRAM designed using dynamic logic design. The proposed circuit consists of buffers, 1 transistor, and capacitor. The circuit is schematized by DSCH2 and layout designs are generated by Microwind CAD tool. The designed and proposed circuits are considered bypass logic and Boolean reduction technique that reduced number of transistors per designed cell logic. The circuits are simulated in various feature sizes namely CMOS 70 nm, CMOS 90 nm, CMOS 120nm and corresponding voltages 0.7 V, 1 V, 1.2 V respectively. Our proposed dynamic logic DRAM circuit has compared with the designed circuit and other existing circuits. Our proposed and designed circuit gives better results in terms of power dissipation, speed, and Area. (R-2) The projected 1-bit DRAM has an outcome and achieved low power 0.229 µW, the area of 22×13µm, the propagation delay of 21 ps and a speed of 0.17 GHz