Abstract

We describe a method for imposing the correct electron-nucleus (e-n) cusp in molecular orbitals expanded as a linear combination of (cuspless) Gaussian basis functions. Enforcing the e-n cusp in trial wave functions is an important asset in quantum Monte Carlo calculations as it significantly reduces the variance of the local energy during the Monte Carlo sampling. In the method presented here, the Gaussian basis set is augmented with a small number of Slater basis functions. Note that, unlike other e-n cusp correction schemes, the presence of the Slater function is not limited to the vicinity of the nuclei. Both the coefficients of these cuspless Gaussian and cusp-correcting Slater basis functions may be self-consistently optimized by diagonalization of an orbital-dependent effective Fock operator. Illustrative examples are reported for atoms (\ce{H}, \ce{He} and \ce{Ne}) as well as for a small molecular system (\ce{BeH2}). For the simple case of the \ce{He} atom, we observe that, with respect to the cuspless version, the variance is reduced by one order of magnitude by applying our cusp-corrected scheme.Comment: 23 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021