Abstract

We provide a classification of near-horizon geometries of supersymmetric, asymptotically anti-de Sitter, black holes of five-dimensional U(1)^3-gauged supergravity which admit two rotational symmetries. We find three possibilities: a topologically spherical horizon, an S^1 \times S^2 horizon and a toroidal horizon. The near-horizon geometry of the topologically spherical case turns out to be that of the most general known supersymmetric, asymptotically anti-de Sitter, black hole of U(1)^3-gauged supergravity. The other two cases have constant scalars and only exist in particular regions of this moduli space -- in particular they do not exist within minimal gauged supergravity. We also find a solution corresponding to the near-horizon geometry of a three-charge supersymmetric black ring held in equilibrium by a conical singularity; when lifted to type IIB supergravity this solution can be made regular, resulting in a discrete family of warped AdS(3) geometries. Analogous results are presented in U(1)^n gauged supergravity.Comment: Latex, 29 pages. v2: minor improvements, references adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019