Abstract

The Contact Process has been studied on complex networks exhibiting different kinds of quenched disorder. Numerical evidence is found for Griffiths phases and other rare region effects, in Erd˝os Rényi networks, leading rather generically to anomalously slow (algebraic, logarithmic,...) relaxation. More surprisingly, it turns out that Griffiths phases can also emerge in the absence of quenched disorder, as a consequence of sole topological heterogeneity in networks with finite topological dimension. In case of scalefree networks, exhibiting infinite topological dimension, slow dynamics can be observed on tree-like structures and a superimposed weight pattern. In the infinite size limit the correlated subspaces of vertices seem to cause a smeared phase transition. These results have a broad spectrum of implications for propagation phenomena and other dynamical process on networks and are relevant for the analysis of both models and empirical data

    Similar works