Role of impact parameter in branching reactions: Chemical accelerator studies of the reaction Xe++CH4→XeCH3 ++H

Abstract

This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/74/9/10.1063/1.441716.Integral reaction cross sections and product velocity distributions have been measured for the ion–molecule reaction Xe+(CH4,H)XeCH3 + over the relative reactant translational energy range of 0.7–5.5 eV by chemical accelerator techniques. The kinematic results indicate that reaction proceeds in a direct manner by a rebound mechanism over the energy range studied, suggesting that this substitution reaction occurs predominantly in small impact parameter collisions. This finding contrasts with the results obtained for the competing reaction, Xe+(CH4,CH3)XeH+, where the strong forward scattering of the XeH+ product indicates that H‐atom abstraction occurs primarily in large impact parameter collisions

    Similar works