research

Wilson-Loop Characterization of Inversion-Symmetric Topological Insulators

Abstract

The ground state of translationally-invariant insulators comprise bands which can assume topologically distinct structures. There are few known examples where this distinction is enforced by a point-group symmetry alone. In this paper we show that 1D and 2D insulators with the simplest point-group symmetry - inversion - have a ZZ^{\geq} classification. In 2D, we identify a relative winding number that is solely protected by inversion symmetry. By analysis of Berry phases, we show that this invariant has similarities with the first Chern class (of time-reversal breaking insulators), but is more closely analogous to the Z2Z_2 invariant (of time-reversal invariant insulators). Implications of our work are discussed in holonomy, the geometric-phase theory of polarization, the theory of maximally-localized Wannier functions, and in the entanglement spectrum.Comment: The updated version is accepted in Physical Review

    Similar works