Abstract

We have shown previously that lovastatin, a 3-hydroxy-3-methyl- glutaryl coenzyme A reductase inhibitor, induces apoptosis in spontaneously immortalized rat brain neuroblasts. In the present study, we analysed the intracellular signal transduction pathways by which lovastatin induces neuroblast apoptosis. We showed that lovastatin efficiently inhibited Ras activation, which was associ-ated with a significant decrease in ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Lovastatin also decreased CREB phosphorylation and CREB-mediated gene expression. The effects of lovastatin on the Ras/ERK1/2/CREB pathway were time- and concentration-dependent and fully prevented by meva-lonate. In addition, we showed that two MEK [MAPK (mitogen-activated protein kinase)/ERK kinase] inhibitors, PD98059 and PD184352, were poor inducers of apoptosis in serum-treated neuroblasts. However, these inhibitors significantly increased apop-tosis induced by lovastatin treatment. Furthermore, we showed that pharmacological inhibition of both MEK and phosphoinos-itide 3-kinase activities was able to induce neuroblast apoptosis with similar efficacy as lovastatin. Our results suggest that lovast-atin triggers neuroblast apoptosis by regulating several signalling pathways, including the Ras/ERK1/2 pathway. These findings might also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020