research

A review of instability and noise propagation in supersonic flows

Abstract

Originally analytical and numerical models were to be developed for noise production in supersonic jets, wakes and free shear layers. While the effort was concentrated initially on these aspects, other topics were also pursued, most were of interest to the Jet Noise Group of the Aeroacoustics Branch. An overview is given of subjects reviewed and the investigations that were carried out. A significant effort was devoted to numerically predicting the flow field of a turbulent supersonic wall jet. This information is necessary for computing the pressure in the far field. The wall jet was selected because it represents a generic flow that can be associated with plug nozzle in supersonic engines. It combines the characteristic of a boundary layer with that of a free shear flow. The spatially evolving flow obtained using Dash's code would form the input for the stability analysis program. This analysis would determine the large scale instability wave within the flow. The far field pressure can be computed from the shape of the evolving large scale structure by asymptotic methods. Flow characteristics obtained from a program that analyses the turbulent downstream supersonic flow in a nozzle are described and compared with experimental results

    Similar works