Abstract

作者简介: 祁明信, 男, 1945 年7 月 出生, 教授、主任医师、博士研究生 导师, 主要从事白内障的基础与临 床研究。联系电话: 0591-83570887; E-mail:qihuang@netease. com 通讯作者: 黄秀榕,E-mail:[email protected][中文文摘]目的开展晶状体再灌注的离体和动物实验研究,并对再灌注人工晶状体技术进行评价。方法采用新鲜离体幼兔眼、离体猪眼、新西兰白兔眼,应用自行研制的人工晶状体材料,进行以下实验:(1)体外固化实验;(2)晶状体前囊膜微型撕囊及其稳固性实验;(3)经微型前囊膜开口超声乳化吸出晶状体内容物实验;(4)活的新西兰白兔眼内人工晶状体再灌注实验。结果(1)按硅酮聚合物与固化剂50:1的比例可获得柔软、弹性好、固化时间短(完全固化时间为60min)的注入材料;(2)晶状体前囊膜1.8~2.0mm的连续环形撕囊口具有较好的稳定性,可经该微型开口吸出晶状体内容物并灌注材料;(3)超声能量18%、流量25mL·min-1、负压120mmHg(1kPa=7.5mmHg)为晶状体内容物经微型前囊膜开口吸出的最佳条件;(4)注入灌注材料后可形成由晶状体囊膜包裹的、置换原晶状体皮质和核的、新的再灌注人工晶状体。结论采用再灌注人工晶状体的方法可进行新型人工晶状体再灌注,可为治疗白内障和老视提供参考。[英文文摘]Objective To carry out the experimental study on reperfusion of intraocular lens(IOLs) in vitro or in animal,and to assess the technique of IOLs reperfusion.Methods The following experiments were performed by using self-developed materials in fresh rabbit eyes and pig eyes in vitro,as well as in eyes of alive New-Zea-land rabbits:(1)Solidification study of self-developed material in vitro;(2)Continuous circular capsulorhexis(CCC) in anterior capsule of lens and its stability;(3)Draw of lens contents via phaco through mini-CCC;(4)IOLs ref illing in the eyes of alive New-Zea land rabbits. Results(1) Thematerialwhich was soft, springy and short-term solidification(full solidification time was 60 minutes) were obtained in certain proportion of geland solidified agent(50:1) in vitro; ( 2)The CCC in anterior capsule of lens with 1.8-2.0 mm diameter had very good stability. The lens contents were drawn and the materialwere refilled through themini-CCC; (3) The best conditions of drawing out lens contents through m ini-CCC were phaco energy 18% , flow 25 mL·min- 1, and negative pressure 120 mmH g (1kPa=7.5 mmHg);(4) The new refilled IOLs, which were wrapped by capsule of lens and were replaced original cortex and nucleus of lens, were obtained after thematerial refillied. Conc lusion. New IOLs are refilled through this method, which can prov ide reference for the treatment of cataract and presbyopia.福建省科技三项费用;教育厅重点资助项目基金资助(编号:K98041

    Similar works