Accurate line lists for three molecules, BeH, MgH and CaH, in their ground
electronic states are presented. These line lists are suitable for temperatures
relevant to exoplanetary atmospheres and cool stars (up to 2000K). A
combination of empirical and \textit{ab initio} methods is used. The
rovibrational energy levels of BeH, MgH and CaH are computed using the programs
Level and DPotFit in conjunction with `spectroscopic' potential energy curves
(PECs). The PEC of BeH is taken from the literature, while the PECs of CaH and
MgH are generated by fitting to the experimental transition energy levels. Both
spin-rotation interactions (except for BeH, for which it is negligible) and
non-adiabatic corrections are explicitly taken into account. Accurate line
intensities are generated using newly computed \textit{ab initio} dipole moment
curves for each molecule using high levels of theory. Full line lists of
rotation-vibration transitions for 9BeH, 24MgH, 25MgH, 26MgH
and 40CaH are made available in an electronic form as supplementary data
to this article and at \url{www.exomol.com}.Comment: MNRAS (in press