CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Methylmercury cycling in sediments on the continental shelf of southern New England
Authors
Balcom
Benninger
+55 more
Benoit
Benoit
Benoit
Benoit
Benoit
Bloom
Bloom
Bloom
Bloom
Chad R. Hammerschmidt
Choe
Conaway
Coquery
Covelli
Dyrssen
Fitzgerald
Fitzgerald
Fitzgerald
Gagnon
Gill
Gill
Gill
Hammerschmidt
Hammerschmidt
Hammerschmidt
Hammerschmidt
Heiri
Heyes
Hintelmann
Kannan
Kehrig
Klaue
Kraepiel
Lamborg
Lamborg
Lindberg
Mason
Mason
Mason
Mason
Mason
Mikac
Mzoughi
Rolfhus
Ryther
Stoichev
Sunderland
Trüper
Tseng
Tseng
Twitchell
Varekamp
Visscher
William F. Fitzgerald
Winfrey
Publication date
26 October 2005
Publisher
'Elsevier BV'
Doi
Abstract
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 70 (2006): 918-930, doi:10.1016/j.gca.2005.10.020.Exposure of humans to monomethylmercury (MMHg) occurs primarily through consumption of marine fish, yet there is limited understanding concerning the bioaccumulation and biogeochemistry of MMHg in the biologically productive coastal ocean. We examined the cycling of MMHg in sediments at three locations on the continental shelf of southern New England in September 2003. MMHg in surface sediments is related positively to inorganic Hg (Hg(II)=total Hg-MMHg), the geographical distribution of which is influenced by organic material. Organic matter also largely controls the sediment-water partitioning of Hg species and governs the availability of dissolved Hg(II) for methylation. Potential gross rates of MMHg production, assayed by experimental addition of 200Hg to intact sediment cores, are correlated inversely with the distribution coefficient (KD) of Hg(II) and positively with the concentration of Hg(II), most probably as HgS0, in 0.2-µm filtered pore water of these low-sulfide deposits. Moreover, the efflux of dissolved MMHg to overlying water (i.e., net production at steady state) is correlated with the gross potential rate of MMHg production in surface sediments. These results suggest that the production and efflux of MMHg from coastal marine sediments is limited by Hg(II), loadings of which presumably are principally from atmospheric deposition to this region of the continental shelf. The estimated diffusive flux of MMHg from the shelf sediments averages 9 pmol m-2 d-1. This flux is comparable to that required to sustain the current rate of MMHg accumulation by marine fish, and may be enhanced by the efflux of MMHg from near-shore deposits contaminated more substantially with anthropogenic Hg. Hence, production and subsequent mobilization of MMHg from sediments in the coastal zone may be a major source of MMHg to the ocean and marine biota, including fishes consumed by humans.This research was supported by a STAR student fellowship (U91591801) and grant (R827635) from the U.S. Environmental Protection Agency, a graduate student fellowship and grant from the Hudson River Foundation for Environmental Research, and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Doherty Foundation
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 03/01/2020
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 08/06/2012