research

Strong modulation of optical properties in black phosphorus through strain-engineered rippling

Abstract

Controlling the bandgap through local-strain engineering is an exciting avenue for tailoring optoelectronic materials. Two-dimensional crystals are particularly suited for this purpose because they can withstand unprecedented non-homogeneous deformations before rupture: one can literally bend them and fold them up almost like a piece of paper. Here, we study multi-layer black phosphorus sheets subjected to periodic stress to modulate their optoelectronic properties. We find a remarkable shift of the optical absorption band-edge of up to ~0.7 eV between the regions under tensile and compressive stress, greatly exceeding the strain tunability reported for transition metal dichalcogenides. This observation is supported by theoretical models which also predict that this periodic stress modulation can yield to quantum confinement of carriers at low temperatures. The possibility of generating large strain-induced variations in the local density of charge carriers opens the door for a variety of applications including photovoltaics, quantum optics and two-dimensional optoelectronic devices.Comment: 16 pages main text + 13 pages S

    Similar works

    Full text

    thumbnail-image

    Available Versions