Dark Matter and Lepton Flavour Violation in a Hybrid Neutrino Mass Model


We describe a hybrid model in which the light neutrino mass matrix receives both tree-level seesaw and loop-induced contributions. An additional U(1) gauge symmetry is used to stabilize the lightest right-handed neutrino as the Dark Matter candidate. After fitting the experimental neutrino data, we analyze and correlate the phenomenological consequences of the model, namely its impact on electroweak precision measurements, the Dark Matter relic abundance, lepton flavour violating rare decays and neutrinoless double beta decay. We find that natural realizations of the model characterized by large Yukawa couplings are compatible with and close to the current experimental limits.Comment: 25 pages, 9 figures. V2: references added, typos corrected, version accepted by JHE

    Similar works

    Full text


    Available Versions

    Last time updated on 05/06/2019