We propose an all-superconducting three-terminal setup consisting in a carbon
nanotube (or semiconducting nanowire) contacted to three superconducting leads.
The resulting device, referred to as a "biSQUID", is made of four quantum dots
arranged in two loops of different surface area. We show how this biSQUID can
prove a useful tool to probe nonlocal quantum phenomena in an interferometry
setup. We study the measured critical current as a function of the applied
magnetic field, which shows peaks in its Fourier spectrum, providing clear
signatures of multipair Josephson processes. The device does not require any
specific fine-tuning as these features are observed for a wide range of
microscopic parameters -- albeit with a non-trivial dependence. Competing
effects which may play a significant role in actual experimental realizations
are also explored.Comment: 13 pages, 9 figure