research

A Scalable Hybrid MAC Protocol for Massive M2M Networks

Abstract

In Machine to Machine (M2M) networks, a robust Medium Access Control (MAC) protocol is crucial to enable numerous machine-type devices to concurrently access the channel. Most literatures focus on developing simplex (reservation or contention based)MAC protocols which cannot provide a scalable solution for M2M networks with large number of devices. In this paper, a frame-based Hybrid MAC scheme, which consists of a contention period and a transmission period, is proposed for M2M networks. In the proposed scheme, the devices firstly contend the transmission opportunities during the contention period, only the successful devices will be assigned a time slot for transmission during the transmission period. To balance the tradeoff between the contention and transmission period in each frame, an optimization problem is formulated to maximize the system throughput by finding the optimal contending probability during contention period and optimal number of devices that can transmit during transmission period. A practical hybrid MAC protocol is designed to implement the proposed scheme. The analytical and simulation results demonstrate the effectiveness of the proposed Hybrid MAC protocol

    Similar works

    Full text

    thumbnail-image

    Available Versions