CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
A geospatial solution using a TOPSIS approach for prioritizing urban projects in Libya
Authors
HAH Al-Najjar
MSAB Amazeeq
+4 more
MO Idrees
B Kalantar
S Mansor
B Pradhan
Publication date
1 January 2018
Publisher
Abstract
© 2018 Proceedings - 39th Asian Conference on Remote Sensing: Remote Sensing Enabling Prosperity, ACRS 2018 The world population is growing rapidly; consequently, urbanization has been in an increasing trend in many developing cities around the globe. This rapid growth in population and urbanization have also led to infrastructural development such as transportation systems, sewer, power utilities and many others. One major problem with rapid urbanization in developing/third-world countries is that developments in mega cities are hindered by ineffective planning before construction projects are initiated and mostly developments are random. Libya faces similar problems associated with rapid urbanization. To resolve this, an automating process via effective decision making tools is needed for development in Libyan cities. This study develops a geospatial solution based on GIS and TOPSIS for automating the process of selecting a city or a group of cities for development in Libya. To achieve this goal, fifteen GIS factors were prepared from various data sources including Landsat, MODIS, and ASTER. These factors are categorized into six groups of topography, land use and infrastructure, vegetation, demography, climate, and air quality. The suitability map produced based on the proposed methodology showed that the northern part of the study area, especially the areas surrounding Benghazi city and northern parts of Al Marj and Al Jabal al Akhdar cities, are most suitable. Support Vector Machine (SVM) model accurately classified 1178 samples which is equal to 78.5% of the total samples. The results produced Kappa statistic of 0.67 and average success rate of 0.861. Validation results revealed that the average prediction rate is 0.719. Based on the closeness coefficient statistics, Benghazi, Al Jabal al Akhdar, Al Marj, Darnah, Al Hizam Al Akhdar, and Al Qubbah cities are ranked in that order of suitability. The outputs of this study provide solution to subjective decision making in prioritizing cities for development
Similar works
Full text
Available Versions
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019