A decoherence-based approach to the classical limit in Bohm's theory

Abstract

The paper explains why the de Broglie-Bohm theory reduces to Newtonian mechanics in the macroscopic classical limit. The quantum-to-classical transition is based on three steps: (i) interaction with the environment produces effectively factorized states, leading to the formation of effective wave functions and hence decoherence; (ii) the effective wave functions selected by the environment–the pointer states of decoherence theory–will be well-localized wave packets, typically Gaussian states; (iii) the quantum potential of a Gaussian state becomes negligible under standard classicality conditions; therefore, the effective wave function will move according to Newtonian mechanics in the correct classical limit. As a result, a Bohmian system in interaction with the environment will be described by an effective Gaussian state and–when the system is macroscopic–it will move according to Newtonian mechanics

    Similar works