Prostate functional magnetic resonance image analysis using multivariate curve resolution methods

Abstract

This paper discusses the potential of Multivariate Curve Resolution (MCR) models to extract physiological dynamics behaviors from Dynamic Contrast Enhanced Magnetic Resonance (DCE-MR) Imaging prostate perfusion studies for cancer diagnosis. A relationship with biomarkers ( hidden parameters for assessing the possible existence of a tumor) from pharmacokinetic models is also studied.This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2011-28112-C04-02.Prats-Montalbán, JM.; Sanz Requena, R.; Marti Bonmati, L.; Ferrer, A. (2014). Prostate functional magnetic resonance image analysis using multivariate curve resolution methods. Journal of Chemometrics. 28(8):672-680. https://doi.org/10.1002/cem.2585S672680288Collins, D. J., & Padhani, A. R. (2004). Dynamic magnetic resonance imaging of tumor perfusion. IEEE Engineering in Medicine and Biology Magazine, 23(5), 65-83. doi:10.1109/memb.2004.1360410JACKSON, A. S. N., REINSBERG, S. A., SOHAIB, S. A., CHARLES-EDWARDS, E. M., JHAVAR, S., CHRISTMAS, T. J., … DEARNALEY, D. P. (2009). Dynamic contrast-enhanced MRI for prostate cancer localization. The British Journal of Radiology, 82(974), 148-156. doi:10.1259/bjr/89518905Leach, M. O., Brindle, K. M., Evelhoch, J. L., Griffiths, J. R., Horsman, M. R., Jackson, A., … Workman, P. (2005). The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. British Journal of Cancer, 92(9), 1599-1610. doi:10.1038/sj.bjc.6602550Tofts, P. S., Brix, G., Buckley, D. L., Evelhoch, J. L., Henderson, E., Knopp, M. V., … Weisskoff, R. M. (1999). Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging, 10(3), 223-232. doi:10.1002/(sici)1522-2586(199909)10:33.0.co;2-sPort, R. E., Knopp, M. V., & Brix, G. (2001). Dynamic contrast-enhanced MRI using Gd-DTPA: Interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magnetic Resonance in Medicine, 45(6), 1030-1038. doi:10.1002/mrm.1137McGrath, D. M., Bradley, D. P., Tessier, J. L., Lacey, T., Taylor, C. J., & Parker, G. J. M. (2009). Comparison of model-based arterial input functions for dynamic contrast-enhanced MRI in tumor bearing rats. Magnetic Resonance in Medicine, 61(5), 1173-1184. doi:10.1002/mrm.21959Yang, C., Karczmar, G. S., Medved, M., Oto, A., Zamora, M., & Stadler, W. M. (2009). Reproducibility assessment of a multiple reference tissue method for quantitative dynamic contrast enhanced-MRI analysis. Magnetic Resonance in Medicine, 61(4), 851-859. doi:10.1002/mrm.21912Meng, R., Chang, S. D., Jones, E. C., Goldenberg, S. L., & Kozlowski, P. (2010). Comparison between Population Average and Experimentally Measured Arterial Input Function in Predicting Biopsy Results in Prostate Cancer. Academic Radiology, 17(4), 520-525. doi:10.1016/j.acra.2009.11.006Sourbron, S. P., & Buckley, D. L. (2011). Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Physics in Medicine and Biology, 57(2), R1-R33. doi:10.1088/0031-9155/57/2/r1Lüdemann, L., Prochnow, D., Rohlfing, T., Franiel, T., Warmuth, C., Taupitz, M., … Beyersdorff, D. (2009). Simultaneous Quantification of Perfusion and Permeability in the Prostate Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging with an Inversion-Prepared Dual-Contrast Sequence. Annals of Biomedical Engineering, 37(4), 749-762. doi:10.1007/s10439-009-9645-xPrats-Montalbán, J. M., de Juan, A., & Ferrer, A. (2011). Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 107(1), 1-23. doi:10.1016/j.chemolab.2011.03.002Jackson, J. E. (1991). A Use’s Guide to Principal Components. Wiley Series in Probability and Statistics. doi:10.1002/0471725331Bruwer, M.-J., MacGregor, J. F., & Noseworthy, M. D. (2008). Dynamic contrast-enhanced MRI diagnostics in oncology via principal component analysis. Journal of Chemometrics, 22(11-12), 708-716. doi:10.1002/cem.1143Gujral, P., Amrhein, M., Bonvin, D., Vallée, J.-P., Montet, X., & Michoux, N. (2009). Classification of magnetic resonance images from rabbit renal perfusion. Chemometrics and Intelligent Laboratory Systems, 98(2), 173-181. doi:10.1016/j.chemolab.2009.06.004Fortuna, J., Elzibak, A. H., Fan, Z., MacGregor, J. F., & Noseworthy, M. D. (2012). Liver functional magnetic resonance imaging analysis using a latent variables approach. Journal of Chemometrics, 26(5), 170-179. doi:10.1002/cem.2430Buckley, D. L. (2002). Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhancedT1-weighted MRI. Magnetic Resonance in Medicine, 47(3), 601-606. doi:10.1002/mrm.10080Henderson, E., Sykes, J., Drost, D., Weinmann, H.-J., Rutt, B. K., & Lee, T.-Y. (2000). Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. Journal of Magnetic Resonance Imaging, 12(6), 991-1003. doi:10.1002/1522-2586(200012)12:63.0.co;2-1Tauler, R., Smilde, A., & Kowalski, B. (1995). Selectivity, local rank, three-way data analysis and ambiguity in multivariate curve resolution. Journal of Chemometrics, 9(1), 31-58. doi:10.1002/cem.1180090105Tauler, R. (1995). Multivariate curve resolution applied to second order data. Chemometrics and Intelligent Laboratory Systems, 30(1), 133-146. doi:10.1016/0169-7439(95)00047-xPiqueras, S., Duponchel, L., Tauler, R., & de Juan, A. (2011). Resolution and segmentation of hyperspectral biomedical images by Multivariate Curve Resolution-Alternating Least Squares. Analytica Chimica Acta, 705(1-2), 182-192. doi:10.1016/j.aca.2011.05.020De Juan, A., & Tauler, R. (2003). Chemometrics applied to unravel multicomponent processes and mixtures. Analytica Chimica Acta, 500(1-2), 195-210. doi:10.1016/s0003-2670(03)00724-4Jaumot, J., Gargallo, R., de Juan, A., & Tauler, R. (2005). A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometrics and Intelligent Laboratory Systems, 76(1), 101-110. doi:10.1016/j.chemolab.2004.12.007Windig, W., & Guilment, J. (1991). Interactive self-modeling mixture analysis. Analytical Chemistry, 63(14), 1425-1432. doi:10.1021/ac00014a016Gallagher, N. B., Shaver, J. M., Martin, E. B., Morris, J., Wise, B. M., & Windig, W. (2004). Curve resolution for multivariate images with applications to TOF-SIMS and Raman. Chemometrics and Intelligent Laboratory Systems, 73(1), 105-117. doi:10.1016/j.chemolab.2004.04.003Windig, W. (2009). Two-Way Data Analysis: Detection of Purest Variables. Comprehensive Chemometrics, 275-307. doi:10.1016/b978-044452701-1.00048-xChtioui, Y., Bertrand, D., & Barba, D. (1998). Feature selection by a genetic algorithm. Application to seed discrimination by artificial vision. Journal of the Science of Food and Agriculture, 76(1), 77-86. doi:10.1002/(sici)1097-0010(199801)76:13.0.co;2-9Wang, M., Zhou, X., King, R. W., & Wong, S. T. (2007). BMC Bioinformatics, 8(1), 32. doi:10.1186/1471-2105-8-32Sánchez, F. C., Toft, J., van den Bogaert, B., & Massart, D. L. (1996). Orthogonal Projection Approach Applied to Peak Purity Assessment. Analytical Chemistry, 68(1), 79-85. doi:10.1021/ac950496gMultivariate curve resolution homepage http://www.mcrals.info/De Juan, A., Maeder, M., Hancewicz, T., & Tauler, R. (2005). Local rank analysis for exploratory spectroscopic image analysis. Fixed Size Image Window-Evolving Factor Analysis. Chemometrics and Intelligent Laboratory Systems, 77(1-2), 64-74. doi:10.1016/j.chemolab.2004.11.006Keller, H. R., & Massart, D. L. (1991). Peak purity control in liquid chromatography with photodiode-array detection by a fixed size moving window evolving factor analysis. Analytica Chimica Acta, 246(2), 379-390. doi:10.1016/s0003-2670(00)80976-9De Juan, A., Maeder, M., Hancewicz, T., Duponchel, L., & Tauler, R. (s. f.). Chemometric Tools for Image Analysis. Infrared and Raman Spectroscopic Imaging, 65-109. doi:10.1002/9783527628230.ch2De Juan, A., Maeder, M., Hancewicz, T., & Tauler, R. (2008). Use of local rank-based spatial information for resolution of spectroscopic images. Journal of Chemometrics, 22(5), 291-298. doi:10.1002/cem.1099Orton, M. R., d’ Arcy, J. A., Walker-Samuel, S., Hawkes, D. J., Atkinson, D., Collins, D. J., & Leach, M. O. (2008). Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Physics in Medicine and Biology, 53(5), 1225-1239. doi:10.1088/0031-9155/53/5/005Parker, G. J. M., Roberts, C., Macdonald, A., Buonaccorsi, G. A., Cheung, S., Buckley, D. L., … Jayson, G. C. (2006). Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magnetic Resonance in Medicine, 56(5), 993-1000. doi:10.1002/mrm.21066Jaumot, J., & Tauler, R. (2010). MCR-BANDS: A user friendly MATLAB program for the evaluation of rotation ambiguities in Multivariate Curve Resolution. Chemometrics and Intelligent Laboratory Systems, 103(2), 96-107. doi:10.1016/j.chemolab.2010.05.02

    Similar works

    Full text

    thumbnail-image

    Available Versions