research

Path Integral Approach for Spaces of Non-constant Curvature in Three Dimensions

Abstract

In this contribution I show that it is possible to construct three-dimensional spaces of non-constant curvature, i.e. three-dimensional Darboux-spaces. Two-dimensional Darboux spaces have been introduced by Kalnins et al., with a path integral approach by the present author. In comparison to two dimensions, in three dimensions it is necessary to add a curvature term in the Lagrangian in order that the quantum motion can be properly defined. Once this is done, it turns out that in the two three-dimensional Darboux spaces, which are discussed in this paper, the quantum motion is similar to the two-dimensional case. In \threedDI we find seven coordinate systems which separate the Schr\"odinger equation. For the second space, \threedDII, all coordinate systems of flat three-dimensional Euclidean space which separate the Schr\"odinger equation also separate the Schr\"odinger equation in \threedDII. I solve the path integral on \threedDI in the (u,v,w)(u,v,w)-system, and on \threedDII in the (u,v,w)(u,v,w)-system and in spherical coordinates

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020