research

Hierarchy and Feedback in the Evolution of the E. coli Transcription Network

Abstract

The E.coli transcription network has an essentially feedforward structure, with, however, abundant feedback at the level of self-regulations. Here, we investigate how these properties emerged during evolution. An assessment of the role of gene duplication based on protein domain architecture shows that (i) transcriptional autoregulators have mostly arisen through duplication, while (ii) the expected feedback loops stemming from their initial cross-regulation are strongly selected against. This requires a divergent coevolution of the transcription factor DNA-binding sites and their respective DNA cis-regulatory regions. Moreover, we find that the network tends to grow by expansion of the existing hierarchical layers of computation, rather than by addition of new layers. We also argue that rewiring of regulatory links due to mutation/selection of novel transcription factor/DNA binding interactions appears not to significantly affect the network global hierarchy, and that horizontally transferred genes are mainly added at the bottom, as new target nodes. These findings highlight the important evolutionary roles of both duplication and selective deletion of crosstalks between autoregulators in the emergence of the hierarchical transcription network of E.coli.Comment: to appear in PNA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019
    Last time updated on 27/12/2021