research

Fluctuations and Correlations in Lattice Models for Predator-Prey Interaction

Abstract

Including spatial structure and stochastic noise invalidates the classical Lotka-Volterra picture of stable regular population cycles emerging in models for predator-prey interactions. Growth-limiting terms for the prey induce a continuous extinction threshold for the predator population whose critical properties are in the directed percolation universality class. Here, we discuss the robustness of this scenario by considering an ecologically inspired stochastic lattice predator-prey model variant where the predation process includes next-nearest-neighbor interactions. We find that the corresponding stochastic model reproduces the above scenario in dimensions 1< d \leq 4, in contrast with mean-field theory which predicts a first-order phase transition. However, the mean-field features are recovered upon allowing for nearest-neighbor particle exchange processes, provided these are sufficiently fast.Comment: 5 pages, 4 figures, 2-column revtex4 format. Emphasis on the lattice predator-prey model with next-nearest-neighbor interaction (Rapid Communication in PRE

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020