A relativistic nuclear energy density functional is developed, guided by two
important features that establish connections with chiral dynamics and the
symmetry breaking pattern of low-energy QCD: a) strong scalar and vector fields
related to in-medium changes of QCD vacuum condensates; b) the long- and
intermediate-range interactions generated by one-and two-pion exchange, derived
from in-medium chiral perturbation theory, with explicit inclusion of
Δ(1232) excitations. Applications are presented for binding energies,
radii of proton and neutron distributions and other observables over a wide
range of spherical and deformed nuclei from 16O to 210Po. Isotopic
chains of Sn and Pb nuclei are studied as test cases for the isospin
dependence of the underlying interactions. The results are at the same level of
quantitative comparison with data as the best phenomenological relativistic
mean-field models.Comment: 48 pages, 12 figures, elsart.cls class file. Revised version,
accepted for publication in Nucl. Phys.