research

Coordinate Space HFB Calculations for the Zirconium Isotope Chain up to the Two-Neutron Dripline

Abstract

We solve the Hartree-Fock-Bogoliubov (HFB) equations for deformed, axially symmetric even-even nuclei in coordinate space on a 2-D lattice utilizing the Basis-Spline expansion method. Results are presented for the neutron-rich zirconium isotopes up to the two-neutron dripline. In particular, we calculate binding energies, two-neutron separation energies, normal densities and pairing densities, mean square radii, quadrupole moments, and pairing gaps. Very large prolate quadrupole deformations (beta2=0.42,0.43,0.47) are found for the (102,104,112)Zr isotopes, in agreement with recent experimental data. We compare 2-D Basis-Spline lattice results with the results from a 2-D HFB code which uses a transformed harmonic oscillator basis.Comment: 9 pages, 9 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020