1,559 research outputs found

    Novel Porous Polymorphs of Zinc Cyanide with Rich Thermal and Mechanical Behavior

    Full text link
    We investigate the feasibility of four-connected nets as hypothetical zinc cyanide polymorphs, as well as their thermal and mechanical properties, through quantum chemical calculations and molecular dynamics simulations. We confirm the metastability of the two porous phases recently discovered experimentally (Lapidus, S. H.; et al. J. Am. Chem. Soc. 2013, 135, 7621-7628), suggest the existence of seven novel porous phases of Zn(CN)2, and show that isotropic negative thermal expansion is a common occurrence among all members of this family of materials, with thermal expansion coefficients close to that of the dense dia-c phase. In constrast, we find a wide variety in the mechanical behavior of these porous structures with framework-dependent anisotropic compressibilities. All porous structures, however, show pressure-induced softening leading to a structural transition at modest pressure.Comment: Chem. Mater. 201

    Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water

    Get PDF
    Author's manuscript version. The final published version is available from the publisher via doi:10.1016/j.carbon.2015.08.015Copyright © 2015 Elsevier Ltd. All rights reserved.Article first available online - 8th August 2015Advanced functional composite of ZnO nanoparticles embedded in N-doped nanoporous carbons has been synthesized by a simple one-step carbonization of zeolitic imidazolate framework-8 under a water stream atmosphere. A variety of characterization techniques show that the introduction of water steam during the carbonization process holds the key to obtain the fine and homogeneously dispersed ZnO nanoparticles within the functionalised nanoporous carbon matrix. Possessing a higher specific surface area, a larger pore volume and abundant oxygen-containing hydrophilic functional groups, the resulting composite exhibits a stronger interaction with CO2 and is more efficient to promote the photocatalytic degradation-adsorption of methylene blue under visible light than the composite obtained without steam treatment. As a result, the steam derived composite exhibits increased CO2 uptake capacity and excellent methylene blue molecules removal from water. Using different metal-organic frameworks as precursors, this new, simple and green method can be further expanded to generate various new homogeneous dispersed functional metal oxide/porous carbon composites with high efficiency in relevant applications. © 2015 Elsevier Ltd.Royal SocietyRoyal Academy of Engineerin

    Metal-Organic Frameworks in Germany: from Synthesis to Function

    Full text link
    Metal-organic frameworks (MOFs) are constructed from a combination of inorganic and organic units to produce materials which display high porosity, among other unique and exciting properties. MOFs have shown promise in many wide-ranging applications, such as catalysis and gas separations. In this review, we highlight MOF research conducted by Germany-based research groups. Specifically, we feature approaches for the synthesis of new MOFs, high-throughput MOF production, advanced characterization methods and examples of advanced functions and properties

    Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries

    Get PDF
    A three-dimensional hierarchical sandwich-type graphene sheet-sulfur/carbon (GS-S/CZIF8-D) composite for use in a cathode for a lithium sulfur (Li-S) battery has been prepared by an ultrasonic method. The microporous carbon host was prepared by a one-step pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8), a typical zinc-containing metal organic framework (MOF), which offers a tunable porous structure into which electro-active sulfur can be diffused. The thin graphene sheet, wrapped around the sulfur/zeolitic imidazolate framework-8 derived carbon (S/CZIF8-D) composite, has excellent electrical conductivity and mechanical flexibility, thus facilitating rapid electron transport and accommodating the changes in volume of the sulfur electrode. Compared with the S/CZIF8-D sample, Li-S batteries with the GS-S/CZIF8-D composite cathode showed enhanced capacity, improved electrochemical stability, and relatively high columbic efficiency by taking advantage of the synergistic effects of the microporous carbon from ZIF-8 and a highly interconnected graphene network. Our results demonstrate that a porous MOF-derived scaffold with a wrapped graphene conductive network structure is a potentially efficient design for a battery electrode that can meet the challenge arising from low conductivity and volume change.National Science Foundation of China (21373028)This is the final version of the article. It first appeared from American Institute of Physics Publishing via http://dx.doi.org/10.1063/1.490175

    In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption

    Get PDF
    A series of ZIF-8 and hydroxyl-functionalized carbon nanotube (CNT) composites were successfully synthesized by the solvothermal method. The obtained ZIF-8/CNT composites were characterized by XRD, SEM, TGA and N2 adsorption at 77 K. The contents of ZIF-8 and CNTs in the composites were calculated from thermal analysis data. CO2 and N2 adsorption at 273 K on the composites was also investigated and compared. The ZIF-8 particles in the composites exhibit similar crystal structures and morphology to those of pure ZIF-8, but display enhanced thermal stability. The surface areas and pore volumes of the ZIF-8/CNT composites are higher than the values calculated for hypothetical physical mixtures, and the synergetic effect between ZIF-8 and CNTs can be proposed. This phenomenon demonstrates that the incorporation of CNTs into ZIF-8 can facilitate the nucleation and crystallization of ZIF-8. As a result, the composites with an optimal CNT content (3.63 wt%) show improved CO2 adsorption capacity and higher relative selectivity for CO2/N2 compared with pure ZIF-8

    Co, Zn and Ag-MOFs evaluation as biocidal materials towards photosynthetic organisms

    Full text link
    In the present study, the biocidal activity of three different metal organic frameworks (MOFs) based on Co (Co-SIM1), Zn (Zn-SIM1) and Ag (Ag-TAZ) has been evaluated towards one green alga and two cyanobacteria. These organisms are present in fresh- and seawater and take part in the early stages of the biofouling process. The biocidal activity of these materials was evaluated by measuring chlorophyll a concentration and by inhibition zone testing. After 24 h of exposure the three different MOFs caused > 50% of chlorophyll a concentration inhibition towards both cyanobacteria, however, although the green alga presented a great sensitivity for Ag-TAZ (reaching 90% of chlorophyll a concentration inhibition), it was much more resistant to the rest of MOFs. Bioavailability of these metals was studied using ICP-MS, the chemical speciation program Visual MINTEQ, and a heavy metal bioreporter bioanalytical tool. We have elucidated that the biocidal activity presented by these MOFs was due to the dissolved metals released from them and more exactly, it depended on the bioavailability presented by these metal ions, which was closely related with the free ion concentration. This article highlights the potential use of different MOFs as biocidal material towards photosynthetic organisms and reveals important differences in the sensitivity between these organisms that should be taken into account in order to increase the biocidal spectrum of these materialsThis research was supported by the Spanish Ministry of Economy, CTM2013-45775-C2-1-R and CTM2013-45775-C2-2-

    Metal organic frameworks based materials for heterogeneous photocatalysis

    Get PDF
    The increase in environmental pollution due to the excessive use of fossil fuels has prompted the development of alternative and sustainable energy sources. As an abundant and sustainable energy, solar energy represents the most attractive and promising clean energy source for replacing fossil fuels. Metal organic frameworks (MOFs) are easily constructed and can be tailored towards favorable photocatalytic properties in pollution degradation, organic transformations, CO2 reduction and water splitting. In this review, we first summarize the different roles of MOF materials in the photoredox chemical systems. Then, the typical applications of MOF materials in heterogeneous photocatalysis are discussed in detail. Finally, the challenges and opportunities in this promising field are evaluated

    POM@MOF hybrids : synthesis and applications

    Get PDF
    The hybrid materials that are created by supporting or incorporating polyoxometalates (POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are ideal hosts because of their high surface area, long-range ordered structure, and high tunability in terms of the pore size and channels. In some cases, MOFs add an extra dimension to the functionality of hybrids. This review summarizes the recent developments in the field of POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and photocatalysis). The more than 100 papers on this topic have been systematically summarized in a handy table, which covers almost all of the work conducted in this field up to now

    Elucidation of role of graphene in catalytic designs for electroreduction of oxygen

    Full text link
    Graphene is, in principle, a promising material for consideration as component (support, active site) of electrocatalytic materials, particularly with respect to reduction of oxygen, an electrode reaction of importance to low-temperature fuel cell technology. Different concepts of utilization, including nanostructuring, doping, admixing, preconditioning, modification or functionalization of various graphene-based systems for catalytic electroreduction of oxygen are elucidated, as well as important strategies to enhance the systems' overall activity and stability are discussed
    corecore