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Abstract: The hybrid materials that are created by supporting or incorporating polyoxometalates 

(POMs) into/onto metal–organic frameworks (MOFs) have a unique set of properties. They 

combine the strong acidity, oxygen-rich surface, and redox capability of POMs, while overcoming 

their drawbacks, such as difficult handling, a low surface area, and a high solubility. MOFs are 

ideal hosts because of their high surface area, long-range ordered structure, and high tunability in 

terms of the pore size and channels. In some cases, MOFs add an extra dimension to the 

functionality of hybrids. This review summarizes the recent developments in the field of 

POM@MOF hybrids. The most common applied synthesis strategies are discussed, together with 

major applications, such as their use in catalysis (organocatalysis, electrocatalysis, and 

photocatalysis). The more than 100 papers on this topic have been systematically summarized in a 

handy table, which covers almost all of the work conducted in this field up to now. 
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1. Introduction 

Polyoxometalates (POMs), a class of metal oxide clustered anions, have already been 

investigated for more than 200 years. Their history dates back to 1826, when Berzelius reported the 

discovery of the first POM cluster (NH4)3[PMo12O40] nH2O [1]. However, due to difficulties achieving 

insights into the POM structure, no significant progress was made until Keggin determined the 

structure of H3PW12O40 in 1934 [2]. Since then, the interest of scientists in POMs has increased 

drastically, not only in the development of new POM structures, but also towards their use in 

various applications, such as catalysis, optics, magnetism, biological medicine, environmental 

science, life science, and technology [3–7]. In particular, their use in catalysis is one of the most 

examined fields because of their strong acidity, oxygen-rich surface, photoactivity, and redox 

capability. Despite these interesting characteristics, POMs still exhibit some drawbacks for their use 

in catalysis. First, POMs possess a low surface area (<10 m2 g−1), which consequently hinders the 

accessibility of reactants and secondly, their high solubility in aqueous solutions and polar organic 

solvents results in a low recyclability [4]. The immobilization of POMs into/onto porous solids has 

been proposed to overcome these shortcomings and to achieve catalysts with a high catalytic 

performance. In the past few decades, many porous materials have been examined as supports for 

the immobilization of POMs, e.g., silica, ion-exchange resin, zeolites, and activated carbon [5–8]. 

Since the discovery of metal–organic frameworks (MOFs), much effort has been dedicated to use 

these porous materials as potential supports for POMs. MOFs are inorganic–organic hybrid 

crystalline materials that are constructed from metal ions or clusters and organic linkers through 

coordination bonds. These materials have attracted considerable interest in recent years due to their 

large surface areas, tunable pore size, and designable functionalities. So far, MOFs have shown great 
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potential in gas storage and separation, catalysis, sensing, drug delivery, proton conductivity, solar 

cells, supercapacitors, and biomedicine [8–13]. Moreover, MOFs are regarded as an outstanding 

platform for introducing guest molecules because of the high accessibility of their internal surface 

area and long-range ordered channels. So far, several active sites have been successfully embedded 

in the pores or cages of MOFs, such as noble metals, metal oxides, enzymes, and POMs [14–17]. 

The first report of a POM@MOF hybrid was reported in 2005 by Férey and co-workers [18]. In 

this seminal work, the POM, K7PW11O39 (van der Waals radius, 13.1 Å), was successfully 

encapsulated into the big cages of the highly stable Cr-based MOF, MIL-101, by using an 

impregnation method. To date, several other thermal and chemical stable MOFs have been applied 

as supports to host POMs for their use in catalysis, including MIL, UiO, ZIF series, NU-1000, and 

Cu-BTC frameworks (see Table 1). The most examined POMs that have been encapsulated into 

MOFs are the well-known Keggin [XM12O40]n− and Dawson [X2M18O62]n− (X = Si, P, V, Bi, etc.; M = V, 

Mo, W, etc.) POMs and their derivatives. These POMs are of significant interest because their 

structure and properties can be easily varied by removing one or more MO4+ units, leading to 

lacunary POMs such as [PW9O34]9−, or by the substitution of X and M by different metals or a 

combination of two fragments of the Keggin structure, leading to sandwich-type POMs such as 

[Tb(PW11O39)2]11−. 

There are several advantages of using MOFs as a host matrix to encapsulate POMs. First of all, 

their exceptionally high surface areas and confined cages/channels make it possible to ensure a 

homogeneous distribution of the POM in the MOF host. This not only prevents the agglomeration of 

POMs, but also improves their stability and recyclability and ensures a fast diffusion of substrates 

and products. Secondly, the highly regular cages and windows of MOFs ensure a high substrate 

selectivity, or, in other words, only specific substrates/products are able to reach the active POM 

sites. Thirdly, owing to the good interaction and electron transfer between the MOF and POM, an 

increased synergistic catalytic performance is typically observed. Finally, the chemical environment 

of POMs can easily be adjusted through modification or functionalization of MOFs. Therefore, 

POM@MOF hybrids not only combine the interesting properties of POMs and MOFs, but also allow 

the aforementioned disadvantages of POMs to be tackled to afford synergistic catalysis. This review 

is focused on the synthetic aspects of POM@MOF hybrids, as well as their use in catalysis 

(organocatalysis, electrocatalysis, and photocatalysis). Alongside the POM@MOF systems discussed 

here, where the POMs are encapsulated inside a MOF host, POM-based MOFs have also been 

investigated. In these MOFs, the POMs form the actual metal nodes that are interconnected by 

organic linkers [19–21]. However, these fall outside the scope of this review. 

Table 1. Physical properties of representative metal–organic frameworks (MOFs) used to 

encapsulate polyoxometalates (POMs) for catalysis. 

MOFs Chemical Formula Window Porosity 
BET/cm3 

g−1 
Ref. 

UiO-66 
Zr6O4(OH)4(BDC)6, BDC = 

1,4-benzenedicarboxylate 
6 Å triangular 

12 Å (octahedral cages) 

and 7.5 Å (tetrahedral 

cages) 

1100–

2000 
[22] 

UiO-67 
Zr6O4(OH)4(BPDC)6, BPDC = 

biphenyl-4,4′-dicarboxylate 
8 Å triangular 

16 Å (octahedral cages) 

and 12 Å (tetrahedral 

cages) 

2100–

2900 
[23] 

NU-1000 
Zr6O4(OH)4(H2O)4(OH)4(TBAPy)2, TBAPy = 

1,3,6,8- tetrakis(p-benzoate)pyrene) 
10 Å orthogonal 

31 Å (hexagonal channels) 

and 12 Å (triangular 

channels) 

900–2000 [24] 

MOF-545 
Zr6O8(H2O)8(TCPP-H2)2, TCPP = tetrakis 

(4-carboxyphenyl)porphyrin 
- ~16 Å and 36 Å 

1900–

2500 
[25] 

ZIF-8/67 
Zn(MeIM)2/Co(MeIM)2 

MeIM = imidazolate-2-methyl 
3.4 Å hexagonal ~12 Å 

1000–

1800 
[26] 

MIL-101 
X3(F)O(BDC)3(H2O)2, (X = Cr, Al, Fe) BDC = 

1,4-benzenedicarboxylate) 

12 Å pentagonal 

and 16 Å 

hexagonal 

~29 Å and 34 Å 
2500–

4500 
[18] 

MIL-100 
Fe3FO(H2O)2(BTC)3 BTC = 

1,3,5-benzenetricarboxylat 
~5.5 Å and 8.6 Å 25 Å and 29 Å 

1500–

3000 
[27] 

Cu-BTC Cu3(BTC)2, ~9 Å and 4.6 Å 10-13 Å 
1000–

1500 
[28] 
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2. Synthesis and Design of POM@MOF 

To date, several well-known highly stable MOFs have been used to encapsulate POMs, 

including MIL, UiO, and ZIF series, as well as NU-1000 and Cu-BTC frameworks. One of the most 

commonly applied methods to embed POMs in MOFs is impregnation. Wet impregnation is a 

simple and straightforward method, since most of the POMs are well-soluble in polar solvents. 

Typically, the activated MOF powder is immersed in the POM solution to obtain the composite 

material. Several POM@MOF hybrids have been successfully synthesized through this wet 

impregnation method, such as POM@MIL, POM@ZIF, and POM@UN-1000. An important aspect 

allowing the use of this method is that the size of the POM must be smaller than the windows of the 

MOF. Moreover, for some POMs and MOFs, it was observed that the POM loading could not be 

enhanced by increasing the concentration of POM in aqueous solution when a certain POM loading 

was achieved. For example, for POMs whose size is bigger than the pentagonal windows (12 Å) of 

MIL-101(Cr), the POMs were only encapsulated into the large cages, while the other cages, which 

represent 2/3 of the total number of cages of MIL-101(Cr), were unfilled. Naseri et al. demonstrated 

that the loading of a sandwich-type POM [(HOSnOH)3(PW9O34)2]12− (15.2 Å × 10.4 Å) could not be 

enhanced by increasing the concentration of POM in the aqueous solution [29]. 

The impregnation method cannot be used for MOFs whose window size is smaller than the 

POMs, e.g., Cu-BTC, UiO, and ZIF. Therefore, for these MOFs, the one-pot (also known as 

bottle-around-the-ship) synthesis method has been applied to obtain POM@MOF hybrids. The 

one-pot method is also often used to obtain POM-encapsulated MOFs in which the anionic form of 

the POM acts as a structure directing agent to ensure deprotonation of the organic carboxylate 

ligand. For the preparation of POM@MOF hybrids, typically, the synthesis parameters employed to 

obtain the parent MOF are used upon addition of the POM. The one-pot method can not only be 

used to synthesize POM@MOFs that cannot be obtained by impregnation, but can also confine the 

POMs in the MOF cages to prevent leaching if the size of the POMs is bigger than the windows of 

the MOFs. 

Therefore, in conclusion, the synthesis approaches commonly used to incorporate POMs into 

MOFs are impregnation and one-pot synthesis. To choose, however, the “correct” methodology, 

two questions need to be addressed in advance: does the size of the POM fit into the MOF cages 

and can the pore window of the MOF confine the POM? If both criteria are met, one can expect that 

the obtained catalyst will work efficiently at a molecular level. 

As was mentioned before, the first report on the embedding of a POM into the cages of an 

MOF was reported by Férey’s group. They showed that a Keggin-type POM, K7PW11O40 (van der 

Waals radius, 13.1 Å), can be confined in MIL-101(Cr) by simple impregnation. The resulting 

MIL-101-Keggin solid was characterized by XRD, TGA, and N2 sorption, as well as IR and 31P solid 

state NMR, which confirmed the presence of Keggin ions within the pores [18]. As summarized in 

Table 1, MIL-101 has two types of mesoporous cages: a smaller one with an inner size of ~29 Å and 

pentagonal windows of ~12 Å, and a larger one with an inner size of ~34 Å and hexagonal windows 

of ~15 Å. Based on the size of the cage windows and the size of the POM, one can conclude that the 

POM can only diffuse into the largest cages. 

In 2010, Gascon and co-workers prepared PW12@MIL-101 (PW12 = [PW12O40]3−) composites by 

using a one-pot and wet impregnation method [30]. The authors observed a homogeneous 

distribution of PW12 when the one-pot synthesis was applied under stirring conditions. By using the 

wet impregnation method, high loadings of PW12 in MIL-101 resulted in a drastic decrease in the 

surface area and pore volume. However, this decrease in surface area and pore volume was smaller 

for the one-pot synthesis method in comparison to the impregnation method using the same PW12 

loading. The authors stated that in the one-pot synthesis, both the large- and medium-sized cavities 

were occupied, while, when using the impregnation method, only the larger cavities were 

accessible. 

Canioni and co-workers compared different synthesis methods for encapsulating POMs in 

MIL-100(Fe) [31]. The authors observed a good agreement between the experimentally obtained 

POM loading and the maximum theoretical loading for the PMo12@MIL-100 (PMo12 = [PMo12O40]3−) 
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obtained by a one-pot solvothermal synthesis. In addition to this, the solvothermally obtained 

PMo12@MIL-100 showed a good stability in aqueous solution and no POM leaching was observed 

after 2 months. On the contrary, the PMo12@MIL-100 material prepared through impregnation 

exhibited significant POM leaching after 2 months. 

Based on the above examples, POM leaching was observed for the POM@MIL-101 and 

POM@MIL-100 obtained by impregnation, since immobilization is based on an adsorption 

equilibrium. One way to circumvent this leaching is to use amino-functionalized MOF structures, 

e.g., UiO-66-NH2 and MIL-53-NH2, which can ensure a better interaction with the polyanions [32–

34]. The formation of complexes such as −NH3+[H2PW12O40]− between primary amines, ammonia, or 

pyridine and PW12 is well-documented [35]. In 2012, Gascon and co-workers used a 

microwave-assisted one-pot synthesis to obtain PW12@MIL-101-NH2(Al) as their attempts to 

synthesize MIL-101-NH2(Al) containing PW12 by one-pot solvothermal synthesis were not 

successful [36]. One year later, Bromberg et al. examined the encapsulation of POMs in 

amino-functionalized MOFs (NH2-MIL-101(Al) and NH2-MIL-53(Al)) by immobilization. They 

concluded that POMs electrostatically interact with the MOF surface to form a stable composite. 

The thermal stability of the composites PW12@NH2-MIL-53(Al) and PW12@NH2-MIL-101(Al) was 

similar to the stability of the parent MOFs [37].  

Besides MIL-101, Cu-BTC (namely HKUST-1 or MOF-199) has also been used as a host 

material to encapsulate Keggin- and Dawson-type POMs [38,39]. As shown in Table 1, the larger 

cages of Cu-BTC have an inner diameter of 1.3 nm and a pore window of 0.9 nm, which perfectly 

ensures the stable entrapment of POMs. For example, PW12 with a diameter of approximately 1.06 

nm was used as a structure directing agent for the self-assembly of Cu-BTC at room temperature 

[38]. The authors observed an enhanced chemical and thermal stability after the embedding of POM 

and no POM leaching was noted during catalysis in several studies [40,41]. In one of these studies, 

Shuxia Liu’s group prepared a series of Keggin-type POMs in Cu-BTC, denoted as NENU-n, n = 

1~10, and formulated as [Cu2(BTC)4/3(H2O)2]6 [HnXM12O40]·(C4H12N)2 (X = Si, Ge, P, As, V, Ti; M = W, 

Mo), by using a one-pot hydrothermal synthesis [42,43]. The templating effect of the POMs resulted 

in highly crystalline composite materials which showed an enhanced thermal stability. Moreover, 

as large crystals were obtained, the structures were elucidated by means of single-crystal X-ray 

diffraction, demonstrating that the Keggin polyanions were confined in the larger cuboctahedral 

cages (inner diameter of 1.3 nm) [43]. 

Besides MIL-101 and Cu-BTC, isostructural imidazolate frameworks, namely ZIF-8 and ZIF-67, 

have also been frequently used as the host matrix. The sodalite-type cavities of ZIF-8 have a size of 

approximately 1.1 nm, but the accessible window of the cavity is rather small (0.34 nm). 

Keggin-based POMs possess a relatively larger particle size up to 1.3 ~ 1.4 nm in comparison to the 

cavities of ZIF-8, but can fit perfectly in their anionic form (1 nm diameter of PW12) [33]. Therefore, 

the bottle-around-the-ship method is an ideal approach for confining POMs inside ZIF-8 or ZIF-67 

[44]. For instance, Malka et al. reported a POM encapsulated in ZIF-8 for its use as an esterification 

catalyst. The authors were able to obtain a PW12 loading of 18 wt% by using a one-pot synthesis 

strategy at room temperature in aqueous solution. However, after three catalytic cycles, 

degradation of the MOF occurred and 9% of the POM leached out [45]. A way to overcome the 

POM leaching in ZIF-8 was demonstrated in the work of Jeon et al. In this study, an impregnation 

method was used to functionalize the surface of the ZIF-8 nanoparticles with a Keggin-type PW12, 

in order to obtain a core–shell MOF–POM composite. Interestingly, due to the strong interaction, 

the POM-decorated MOF became insoluble in hydrophilic solvents [46]. 

Lin and co-workers constructed a POM@MOF molecular catalytic system with a Ni-containing 

POM [Ni4(H2O)2(PW9O34)2]10− (namely Ni4P2) into an [Ir(ppy)2(bpy)]+-derived MOF by one-pot 

synthesis, and the MOF was isostructural to UiO-66, with extended ligands. Ni4P2 POMs can be 

encapsulated in the octahedral cages with an inner dimension of 2.2 nm [47]. 

In the studies mentioned above, the one-pot synthesis and wet impregnation methodology 

both give a high chance of success in the synthesis of POM-encapsulated MOFs. Although the 

impregnation method is straightforward, it is only applicable for MOF pore windows larger than 
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the POMs. However, leaching of the POMs might happen unless precautions are taken in advance 

to ensure a good interaction between POM and MOF supports. The use of POMs as a template 

might enhance the crystallinity of the MOF framework, which makes a one-pot synthesis very 

attractive. However, it is important to note here that the size of the POM needs to be larger than the 

pore window of the MOFs to prevent leaching. In addition to this, the one-pot synthesis method is 

not applicable to all MOF structures. In most cases, the POM@MOFs materials obtained through a 

one-pot synthesis or impregnation method have a positive influence on the thermal stability in 

comparison to the parent non-functionalized MOF. 

Besides the commonly used one-pot and impregnation method, there are some other efficient 

methods for constructing POM-encapsulated MOFs. In 2018, Zhong et al. synthesized NENU-3 

(PW12@HKUST-1) by a liquid-assisted grinding method [48]. By using a two-step synthesis, PW12 

and the Cu salt were first dissolved and evaporated to obtain the copper salt of PW12. Hereafter, the 

H3BTC ligand was added in the presence of a small amount of alcohol (MeOH and EtOH), which 

was used as the grinding liquid. The mixture was ground for 5 min and the color gradually 

changed to blue. After washing and drying at 60 °C for 24 h, the obtained nanocrystalline, NENU-3, 

showed a high crystallinity, and the surface area was slightly higher compared to NENU-3 obtained 

in one-pot solvothermal synthesis. In 2019, G. Li et al. employed an in-situ hot-pressing approach to 

encapsulate the Keggin-type PW12 into an indium-based MOF (MFM-300(In)) [49]. As shown in 

Figure 1, all the ingredients, including the POMs, were ground in the absence of a solvent, after 

which they were packed with an aluminum foil and heated on a plate at 80 °C for only 10 min to 

obtain PW12@MFM-300(In) composites. The resulting materials exhibited a high crystallinity and 

stability and no PW12 aggregates were observed on the MOF surface. 

 

Figure 1. The hot-pressing synthesis process of PW12@MFM-300(In). Reprinted from [49]. Copyright 

(2019), with permission from Elsevier. 

3. Catalytic Applications 

3.1. Organocatalysis  

3.1.1. Oxidation Reaction  

Oxidation reactions are one of the most elementary reactions, and have already been 

extensively investigated by various catalytic systems. POM@MOF hybrid materials are considered 

as potential oxidation catalysts due to the presence of acidic sites within MOFs, along with the 

strong acidity and redox performance of POMs. Accordingly, some well-known MOFs have been 

reported to encapsulate POMs for their use in oxidation reactions, including MIL(Cr, Fe, or Al), 

UiO(Zr), and ZIF series, as well as Cu-BTC and NU-1000 frameworks. Among the different 

oxidation reactions, oxidative desulfurization (ODS) and the selective oxidation of alcohols and 

alkenes are the most studied reactions using POM@MOF catalysts. 

ODS, as one of the promising methods for removing sulfur-containing compounds from fuels, 

has significant importance in both academic research and industrial chemistry. Since 2012, several 

Keggin- and sandwich-type POMs, including [A-PW9O34]9− [50], [PW12O40]3− [51–54], 

[PW11Zn(H2O)O39]5− [55,56], [Tb(PW11O39)2]11− [57], and [Eu(PW11O39)2]11− [58], have been incorporated 

into the cavities of MIL(Cr, Fe, or Al) for the ODS reaction, using H2O2 as the oxidant. The 

heterogeneous POM@MIL catalysts could not only be easily recycled and reused, but also showed a 
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higher catalytic activity compared to the homogeneous POM counterparts. For example, Balula’s 

group reported that the heterogeneous Tb(PW11)2@MIL-101 (Tb(PW11)2 = [Tb(PW11O39)2] 11−) catalyst 

exhibits 95% conversion of benzothiophene (BT) at 50 °C after 2 h, whereas the homogeneous 

Tb(PW11)2 catalyst affords a conversion of only 32% under the same reaction conditions [57]. 

Although the synthesized Tb(PW11)2@MIL-101 catalyst showed POM leaching, its structure and 

morphology remained intact after three consecutive ODS runs. Another study proved that the 

chemical and thermal stability of POM@MIL-101(Cr) systems could be enhanced compared to 

individual POMs and MOFs. More specifically, Silva’s group demonstrated the high stability of the 

PW11@MIL-101 (PW11 = [PW11O39]7−) catalyst in aqueous H2O2, while PW11 decomposed into 

peroxo-complexes in the presence of H2O2 [59]. In addition, Naseri and co-workers observed that 

the thermal stability of the synthesized P2W18Ce3@MIL-101 (P2W18Ce3 = [(OCeIVO)3(PW9O34)2]12−) and 

P2W18Sn3@MIL-101 (P2W18Sn3 = [(HOSnIVOH)3(PW9O34)2]12−) materials improved in comparison to the 

single MIL-101(Cr) framework. The thermally stable POM@MOF materials exhibited >95% 

conversion of diphenyl sulfide after five cycles [29].  

In an interesting study by Cao and co-workers, the effect of the window size within MOFs on 

the catalytic ODS performance of different POM@MOF materials was investigated [60]. In this work, 

PW12 was encapsulated into three robust MOFs with different window sizes, namely MIL-100(Fe) 

(8.6 and 5.8 Å), UiO-66 (6 Å), and ZIF-8 (3.4 Å) (see Table 1). Among them, PW12@MIL-100(Fe) 

exhibited the highest activity (92.8%) for the oxidation of 4,6-dimethyldibenzothiophene (3.62 × 6.17 

× 7.86 Å3) compared to UiO-66 (39.1%) and ZIF-8 (9.1%). The observed higher activity was 

attributed to the large window size of MIL-100(Fe), which enabled a fast diffusion of the substrate 

into the cages. Another important parameter is the influence of the POM loading on the catalytic 

performance. The conversion of dibenzothiophene (DBT) was at least two times higher when 

16%-PW12@MIL-100(Fe) was used as a catalyst in comparison to the 7%-PW12@MIL-100(Fe) catalyst, 

owing to the higher POM loading. However, when the loading was increased to 35%, the 

conversion of DBT decreased a lot due to partial pore blocking, which limited the diffusion of 

reactants to the active sites.  

To further enhance the reactivity and recyclability of POM@MOF materials in ODS reactions, 

amine-functionalized MOFs were employed for encapsulating POMs owing to the strong 

electrostatic interaction between amine groups and POM anions, including NH2-MIL-101(Cr) [33], 

NH2-MIL-101(Al) [36,56], and NH2-MIL-53(Al) [58]. For instance, Cao and co-workers reported the 

incorporation of PW12 into NH2-MIL-101(Cr) as a catalyst for the ODS reaction. The obtained 

material gave a full conversion of DBT at 50 °C after 1 h [33]. Notably, the reusability tests indicated 

that the conversion of DBT remained unchanged during six consecutive catalytic cycles using 

PW12@NH2-MIL-101(Cr) as a catalyst, due to the strong electrostatic interactions between PW12 and 

the amine groups. Another report by Su and co-workers showed that the 

PW12@MIL-101(Cr)-diatomite gave 98.6% conversion of DBT at 60 °C for 2 h after three consecutive 

cycles, which was attributed to the high dispersion of POMs [54].  

In addition to ODS reactions, the selective oxidation of alkenes [61–66] and alcohols [34] was 

evaluated using POM@MIL catalysts. For example, Bo and co-workers synthesized 

H3+xPMo12−xVxO40@MIL-100(Fe) (x = 0, 1, 2) materials and their catalytic performance were assessed 

in the oxidation of cyclohexene, using H2O2 as the oxidant [66]. Among them, the 

H4PMo11VO40@MIL-100(Fe) material exhibited 83% conversion of cyclohexene, with an excellent 

selectivity for 2-cyclohexene-1-one (90%) after five successive catalytic cycles. In 2007, our group 

developed a new POM@MIL-101 catalyst based on dual amino-functionalized ionic liquid (DAIL) 

[34]. Firstly, DAIL was introduced onto the coordinatively unsaturated chromium sites of 

MIL-101(Cr) by a post-synthetic strategy, followed by immobilization of the Keggin-type PW12 onto 

the DAIL-modified MIL-101 through anion exchange (see Figure 2). The PW12/DAIL/MIL-101 

catalyst exhibited a very high turnover number (TON: 1900) for the selective oxidation of benzyl 

alcohol towards benzaldehyde at 100 °C for 6 h. The PW12/DAIL/MIL-101 catalyst demonstrated a 

higher catalytic activity compared to the PW12/MIL-101 catalyst without DAIL functionalities (TON: 

1400). The higher activity was due to the presence of remaining free amino groups anchored on the 
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imidazolium moieties of DAIL, which play a crucial role in enhancing the accessibility of TBHP as 

the oxidant. Moreover, the PW12/DAIL/MIL-101 catalyst was reused for at least five cycles, with no 

significant leaching of the tungsten species.  

  
(a) (b) 

Figure 2. (a) Schematic illustration of the preparation of PW/dual amino-functionalized ionic liquid 

(DAIL)/MIL-101(Cr); (b) recyclability of the PW/DAIL/MIL-101(Cr) catalyst. Reprinted with 

permission from [34]. Copyright (2017), Royal Society of Chemistry. 

Another type of MOF, namely Cu-BTC, has also been employed to encapsulate POMs. In 2008, 

six kind of Keggin-type POMs were encapsulated into Cu-BTC (named NENU-n, NENU = 

Northeast Normal University) using a one-pot hydrothermal method and their crystal structures 

were determined [43]. Subsequently, various POMs were encapsulated into the Cu-BTC framework 

and their catalytic performance was examined in ODS reactions [67,68], the oxidation of alcohols 

[69,70], olefins [39,71–73], benzene, and H2S [41,74]. For example, Zheng et al. prepared different 

sizes of nanocrystal-based catalysts, [Cu2(BTC)4/3(H2O)2]6[H5PV2Mo10O40] (NENU-9N), by using 

various copper salts and adjusting the pH of the solution for the ODS reaction (see Figure 3) [75]. 

They proposed that the reaction kinetics can be facilitated by decreasing the size of the nanocrystals. 

The 550 nm NENU-9 showed a significantly higher conversion of DBT (~90%) in 60 min compared 

to 300 μm NENU-9 (41%) and the homogeneous POM (2%) in 90 min. To further improve the 

stability of POM@MOF materials and their catalytic ODS performance, POM@MOF compounds 

were confined in other porous materials, e.g., MCM-41 [76,77], carbon nanotubes [78], mesoporous 

SBA-15 [79], and hollow ZSM-5 zeolite [80]. For example, POM@Cu-BTC was confined in the pores 

of MCM-41 to prevent deactivation of the catalyst [76]. The POM@Cu-BTC@MCM-41 (POM = 

Cs2HPMo6W6O40) exhibited almost full conversion (99.6%) of DBT in 180 min under optimal 

reaction conditions and could be reused more than 15 times without a significant loss of activity. Lu 

and co-workers prepared a series of POM@Cu-BTC (POM = PW12, [PMo12 − xVxO40](3 + x)− (x = 0, 1, 2, 3)) 

catalysts and investigated their performance for the oxidation of benzyl alcohol to benzaldehyde, 

with H2O2 as the oxidant (Figure 4) [70]. The authors observed that the vanadium-containing POMs 

improved the conversion of benzyl alcohol because of the high redox ability of the POMs. However, 

when increasing the vanadium content in the POMs, overoxidation to benzoic acid resulted in a 

lower selectivity towards benzaldehyde. The PMo12@Cu-BTC showed approximately 75% 

conversion of benzyl alcohol with ~90% selectivity towards benzaldehyde, whereas the 

PMo9V3@Cu-BTC showed ~98% conversion of benzyl alcohol with ~65% selectivity using the same 

reaction conditions. In other words, the product distribution could be controlled by adjusting the 

redox capability of the POMs. 

Interestingly, in a few studies, a synergistic effect between the POM and Cu-BTC was observed 

[41,74,81]. For example, Hill prepared CuPW11@Cu-BTC (CuPW11 = [CuPW11O39]5−) for the oxidation 

of several sulfur compounds and proposed synergistic effects between PW11Cu and Cu-BTC [41]. 

Not only the hydrolytic stability of the hybrid POM@MOF was improved, but also the TON (12), as 
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the oxidation of H2S under ambient conditions increased significantly compared to the individual 

Cu-BTC (0.02) and POM (no production). 

  

Figure 3. (a) Field emission SEM of Northeast Normal University (NENU)-9N with (a) copper 

nitrate as the metal source at pH 2.5, (b) copper acetate as the metal source at pH 2.5, and c) copper 

acetate as the metal source at pH 4.0. The percentage of DBT-to-DBTO2 conversion versus reaction 

time by using a) NENU-9N (average diameter = 550 nm), (b) NENU-9 (average diameter = 300 mm), 

and (c) POVM (average diameter = 300 mm) as catalysts. Reaction conditions: catalyst (0.01 mmol), 

DBT (147 mg, 0.8 mmol), and isobutyraldehyde (0.72 mL, 8 mmol) in decalin (50 mL) at 80 °C. 

Reprinted with permission from [75]. Copyright (2013), John Wiley and Sons. 

 

Figure 4. Oxidation of benzyl alcohol by different POM@MOF-199 catalysts. Reprinted with 

permission from [70]. Copyright (2014), John Wiley and Sons. 

The robust Zr-based MOFs have also attracted much attention for hosting POMs for oxidation 

reactions. The earliest study on the introduction of POMs into a Zr-based MOF was reported by 

Dolbecq and co-workers in 2015 [82]. Three tungstate POMs ([PW12O40]3− (12 Å), [PW11O39]7−, and 

[P2W18O62]6− (14 Å)) were encapsulated into the pores of UiO-67. Subsequently, Dai and co-workers 

examined the catalytic performance of 35%-PW12@UiO-66 for the selective oxidation of 

cyclopentene (CPE) to glutaraldehyde (GA) [83]. The catalyst showed ~95% conversion of CPE, 

with a ~78% yield for GA at 35 °C after 24 h of reaction. Unfortunately, the catalyst showed PW12 

leaching (~3 wt%) after three catalytic cycles. To address this POM leaching issue, Yu and 

co-workers used UiO-bpy (bpy = 2,2′-bipyridine-5,5′-dicarboxylic acid) to encapsulate 

polyoxomolybdic cobalt (CoPMA) [84]. The bpy sites of the UiO-bpy framework provided an extra 
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interaction with the POM compared to the UiO-67 without bpy moieties. The catalytic activities of 

CoPMA@UiO-bpy and CoPMA@UiO-67 were assessed in the oxidation of styrene, using O2 as the 

oxidant. The CoPMA@UiO-bpy exhibited the highest catalytic performance, with 80% conversion of 

styrene and 59% selectivity towards styrene epoxide.  

Another Zr-based MOF, denoted as NU-1000, with small triangular (12 Å) and larger 

hexagonal (31 Å) channels, has been used to support POMs such as [PW12O40]3− and [PMo10V2O40]5− 

[85–87]. For example, Farha’s group prepared PW12@NU-1000 through an impregnation method for 

the oxidation of 2-chloroethyl ethyl sulfide (CEES), using H2O2 as the oxidant. The authors 

demonstrated that the most likely location for PW12 clusters is in the small triangular channels, 

which was further confirmed by means of powder X-ray diffraction, scanning transmission electron 

microscopy, and difference envelope density analysis. At the same time, PW12@NU-1000 showed a 

higher conversion of CEES (98% after 20 min) compared to the pristine NU-1000 (77% after 90 min) 

and homogeneous POM (98% after 90 min). However, the PW12@NU-1000 exhibited only 57% 

selectivity towards 2-chloroethyl ethyl sulfoxide (CEESO). In a subsequent work, the authors 

demonstrated that the PW12 could migrate from the micropores to the mesopores of NU-1000 under 

mild thermal activation (see Figure 5). Moreover, the PW12@NU-1000 showed a full conversion of 

CEES after 5 min, with ~95% selectivity towards CEESO. Recently, this group also prepared the 

PV2Mo10@NU-1000 catalyst by using the same method and the synthesized material showed a full 

conversion of CEES, with O2 as the oxidant. 

  

Figure 5. Structural representations of the PW12@NU-1000. Reprinted with permission from [86]. 

Copyright (2018), Royal Society of Chemistry. 

In addition to the well-known MOFs, several other POM@MOF hybrid materials, including 

[Co(BBPTZ)3][HPMo12O40]·24H2O and [CuI6(trz)6(PW12O40)2], have been synthesized and applied for 

ODS [88], the oxidation of aryl alkenes [89,90], alkylbenzenes [91], and alcohols [92] (see Table 2). 

Besides the use of POMs encapsulated in the cages of MOFs, some POMs have been covered 

on the surface of MOFs to achieve core–shell structured hybrid materials for oxidation reactions 

[46,93]. For example, PW12 was loaded onto the ZIF-8 surface to obtain a core–shell catalyst for the 

oxidation of benzyl alcohol. Notably, strong O-N bonding between PW12 and the imidazole group 

of the ZIF-8 was detected through X-ray photoelectron spectroscopy and X-ray absorption 

near-edge structure measurements. Accordingly, the ZIF-8@PW12 material was insoluble in 

hydrophilic solvents. The ZIF-8@PW12 material exhibited a high conversion of benzyl alcohol 

(>95%), with 90% selectivity towards benzaldehyde, and outperformed the activity of pure PW12 

(51%) and ZIF-8 (30%). 
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Table 2. Application of POM@MOF materials in heterogeneous catalysis. 

Entry MOF POM 
Synthesis 

Approach 
Catalytic Reaction Ref. 

Organocatalysis 

1  MIL-101(Cr) 
TBA4.2H0.8[PW

11Zn(H2O)O39] 
Impregnation ODS [55] 

2  MIL-101(Cr) H3PW12O40 One-pot ODS 
[52,5

4] 

3  MIL-101(Cr) 
[Tb(PW11O39)2]

11− 
Impregnation ODS [57] 

4  MIL-101(Cr) TBA3PW12O40 Impregnation ODS [51] 

5  

MIL-100(Fe) 

UiO-66 

ZIF-8 

H3PW12O40 One-pot ODS [60] 

6  
MIL-101(Cr) 

NH2-MIL-53(Al) 

[Eu(PW11O39)2]
11− 

Impregnation ODS [58] 

7  NH2-MIL-101(Cr) H3PW12O40 Impregnation ODS [33] 

8  NH2-MIL-101(Al) 
[PW11Zn(H2O)

O39]5– 

One-pot and 

Impregnation 
ODS [56] 

9  MIL-100(Fe) 
H3+xPMo12−xVx

O40 (x = 0, 1, 2) 
One-pot 

Oxidation of 

cyclohexene 
[66] 

10  MIL-101(Cr) H5PV2Mo10O40 Impregnation 

Oxidation of 

2-chloroethyl ethyl 

sulfide 

[94] 

11  MIL-101(Cr) 

(TBA)7H3[Co4(

H2O)2(PW9O34)

2] 

Impregnation 
Oxidation of alkenes 

and cyclooctane 
[65] 

12  MIL-101(Cr) 
[PW11CoO39]5− 

[PW11TiO40]5− 
Impregnation Oxidation of alkenes [62] 

13  MIL-101(Cr) 

[(HOSnIVOH)3

(PW9O34)2]12−, 

[(OCeIVO)3(P

W9O34)2]12− 

Impregnation 

Selective oxidation of 

various sulfides to 

sulfones 

[29] 

14  MIL-101(Cr) 
[PW4O24]3− 

[PW12O40]3− 
Impregnation 

Epoxidation of various 

alkenes 
[64] 

15  MIL-101(Cr) H3PW12O40 
One-pot and 

Impregnation 

Selective oxidation of 

sulfides to sulfoxides 

and sulfones 

[53] 

16  MIL-101(Cr) 
[PZnMo2W9O3

9]5− 
Impregnation Oxidation of alkenes [63] 

17  NH2-MIL-101(Al) H3PW12O40 One-pot CO oxidation [36] 

18  MIL-101(Cr) H3PMo12O40 One-pot 
Epoxidation of 

propylene 
[61] 

19  MIL-101(Cr) H3PW12O40 Impregnation 
Oxidation of various 

alcohols 
[34] 

20  MIL-101(Cr) [A-PW9O34]9− Impregnation 

ODS 

Oxidation of geraniol 

and R-(+)-limonene 

[50] 

21  MIL-101(Cr) 
[PW11O39]7− 

[SiW11O39]8− 
Impregnation Oxidation of alkenes [59] 

22  Cu-BTC H3+xPMo12−xVx One-pot Synthesis of phenol [74] 
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O40 (x = 1, 2, 3) from benzene 

23  Cu-BTC H3PW12O40 

Liquid-assist

ed 

grinding 

method 

Degradation of 

phenol 
[48] 

24  Cu-BTC 

H6+nP2Mo18-nVn

O62·mH2O 

(n=1-5) 

One-pot ODS [78] 

25  Cu-BTC 

Cs+ ion 

modified 

H3PMo6W6O40 

One-pot ODS [77] 

26  Cu-BTC 

H3+xPMo12−xVx

O40 (x = 0, 1, 2, 

3) 

H3PW12O40 

One-pot 
Selective oxidation of 

alcohols 
[70] 

27  Cu-BTC 

H3PW12O40 

H3PMo12O40 

H7[P(W2O7)(M

o2O7)6] 

H4SiW12O40 

One-pot ODS 
[67,6

8,80] 

28  Cu-BTC H3PW12O40 One-pot 

Oxidation of 

cyclopentene to 

glutaraldehyde 

[72] 

29  Cu-BTC [CuPW11O39]5− One-pot 
Oxidation of thiols and 

H2S 
[41] 

30  Cu-BTC H5PMo10V2O40 One-pot ODS [75] 

31  Cu-BTC H6PMo9V3O40 One-pot 
Oxidation of benzene to 

phenol 
[79] 

32  Cu-BTC H3PMo6W6O40 One-pot ODS [76] 

33  UiO-66 H3PW12O40 One-pot 

Selective oxidation of 

cyclopentene to 

glutaraldehyde 

[83] 

34  
UiO-67 

UiO-bpy 
H3PMo12O40 One-pot Olefins epoxidation [84] 

35  NU-1000 
H5PV2Mo10O40

H3PW12O40 
Impregnation 

Oxidation of 

2-chloroethyl ethyl 

sulfide 

[85–

87] 

36  
[Co(BBPTZ)3][HP 

Mo12O40]·24H2O 
H3PMo12O40 One-pot ODS [88] 

37  

[Co(BBTZ)2][H3BW

12O40]·10H2O 

[Co3(H2O)6(BBTZ)4]

[BW12O40]·NO3·4H2

O 

[BW12O40]5− One-pot 
Oxidation of styrene to 

benzaldehyde 
[90] 

38  

[CuI6(trz)6(PW12O40)

2] 

[CuI3(trz)3(PMo12O4

0)] 

H3PMo12O40 

H3PW12O40 
One-pot 

Oxidation of 

alkylbenzenes to 

aldehydes 

[91] 

39  

[Cu3(4,4′-bpy)3][HS

iW12O40](imi) 

[Cu3(4,4′-bpy)3][P

Mo12O40]( ampyd), 

H3PW12O40 

H3PMo12O40 

H4SiW12O40 

One-pot 
Oxidation of various 

alcohols 
[69] 
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[Cu2(4,4′-bpy)2][HP

Mo12O40] (ampyd) 

[Cu(Phen)(4,4′-bpy

)(H2O)]2[PW12O40](

4,4′-bpy) 

40  

Ni(4,4′-bpy)2]2 

[V7IVV9VO38Cl] 

(4,4′-bpy) 6H2O 

[V7IVV9VO38Cl]4

− 
One-pot Oxidation of alkenes [71] 

41  

[H(bpy)Cu2][PW12

O40] 

[H(bpy)Cu2][PMo12

O40] 

H3PMo12O40 

H3PW12O40 
One-pot 

Oxidation of 

ethylbenzene, alcohol, 

and cyclooctene 

[89] 

42  

H[CuI5CuΙΙ(pzc)2(p

z)4.5(P2W18O62)]·6H2

O 

[P2W18O62]6− One-pot Oxidation of alcohols [92] 

43  
[CuI(bbi)]2([CuI(bbi

)]2VIV2VV8O26)·2H2O 
[V10O26]4− One-pot 

Oxidative cleavage of 

β-O-4 lignin 
[81] 

44  ZIF-8 Mo132 Impregnation ODS [93] 

45  ZIF-8 H3PW12O40 Impregnation 
Oxidation of benzyl 

alcohol 
[46] 

Condensation reaction 

46  ZIF-8 
Al0.66-DTP 

Horic 
One-pot 

Aldol condensation of 

5-hydroxymethylfurfura

l 

(HMF) with acetone 

[95] 

47  MIL-101(Cr) H3PW12O40 Impregnation 
Biginelli condensation 

reaction 
[96] 

48  MIL-101(Cr) H3PW12O40 One-pot 
Cyclopentanone 

self-condensation 
[97] 

49  MIL-101(Cr) H3PW12O40 
One-pot and 

Impregnation 
Baeyer condensation 

[98,9

9] 

50  MIL-101(Cr) H3PW12O40 
One-pot and 

Impregnation 

Knoevenagel 

condensation of 

benzaldehyde with 

ethyl cyanoacetate 

[30] 

51  
NH2-MIL-101(Al) 

NH2-MIL-53(Al) 
H3PW12O40 

Impregnation 

and Joint 

Heating 

Aldehyde condensation 

and polymerization 
[37] 

52  
MIL-100(Fe) 

MIL-101(Cr) 
H3PW12O40 One-pot 

Hydroxyalkylation of 

phenol with 

formaldehyde 

[100] 

Esterification reaction 

53  
MIL-100(Fe) 

Cu-BTC 
H3PW12O40 One-pot 

Enzymatic esterification 

of cinnamic acid 
[101] 

54  Cu-BTC H3PW12O40 One-pot 
Esterification of acetic 

acid with 1-propanol 
[102] 

55  Cu-BTC H3PMo12O40 One-pot 

Esterification of 

levulinic acid (LA) and 

ethanol 

[103] 

56  UiO-66 H4SiW12O40 One-pot 
Esterification of lauric 

acid with methanol 
[104] 

57  MIL-101(Cr) K5[CoW12O40] One-pot Esterification of acetic [105] 
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acid with various 

alcohols, and 

cycloaddition of CO2 

with epoxides 

58  Cu-BTC 

H3PW12O40 

H3PMo12O40, 

H4PVMo11O40, 

H5PV2Mo10O40, 

H6PV3Mo9O40 

One-pot 

Oxidative esterification 

of 

glycerol 

[106] 

59  ZIF-8 H3PW12O40 One-pot 

Esterification of benzoic 

anhydride with 

cinnamyl alcohol 

[45] 

60  Fe-BTC H3PMo12O40 One-pot 
Esterification of free 

fatty acids to biodiesel 
[107] 

61  MIL-100(Fe) H3PW12O40 One-pot 

Esterification of acetic 

acid with monohydric 

alcohols, and 

acetalization of 

benzaldehyde with 

ethanediol 

[108] 

62  Cu-BTC H3PW12O40 One-pot 

Esterification of acetic 

acid with 1-propanol 

and salicylic acid with 

ethanol 

[40,1

09] 

63  MIL-101(Cr) H3PW12O40 One-pot 

Esterification of acetic 

acid 

with n-hexanol, and 

hydrolysis of ethyl 

acetate 

[110] 

64  MIL-53 H3PW12O40 

One-pot by 

ultrasound 

irradiation 

Esterification of oleic 

acid by various alcohols 
[111] 

65  MIL-100(Fe) H3PW12O40 One-pot 
Esterification of oleic 

acid with ethanol 
[112] 

66  NENU-3a H3PW12O40 One-pot 
Esterification of 

long-chain fatty acids 
[113] 

67  UiO-66-2COOH H3PW12O40 One-pot 

Ransesterification-esterif

ication of acidic 

vegetable oils 

[114] 

68  MOF-74 H3PW12O40 One-pot 

Hydrogenation–

esterification tandem 

reactions 

[115] 

Other organic transformations 

69  MIL-101(Cr) H3PW12O40 One-pot 

Dehydration of fructose 

to 

5-hydroxymethylfurfura

l 

[116] 

70  Cu-BTC H3PMo12O40 One-pot 

Transesterification of 

5-hydroxymethylfurfura

l with ethanol 

[117] 

71  ZIF-8 H3PW12O40 Impregnation 
Transesterification of 

rapeseed oil with 
[46] 
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methanol 

72  MIL-100(Fe) H3PMo12O40 One-pot 

Transesterification of 

soybean oil with 

methanol and 

esterification of free 

fatty acids 

[118] 

73  UiO-66 H4SiW12O40 One-pot 

Hydrogenation of 

methyl 

levulinate/transesterifica

tion of 

methyl-3-hydroxyvalera

te 

[119] 

74  MIL-100(Fe) H3PW12O40 One-pot 

Hydrogenation of 

cellobiose/hydrolysis of 

cellulose 

[120] 

75  MIL-101(Cr) K5[CoW12O40] One-pot 
Methanolysis of 

epoxides 
[32] 

76  
COK-15  

MIL-101(Cr) 
H3PW12O40 One-pot 

Methanolysis of styrene 

oxide 

[121,

122] 

77  NENU-11 [PW12O40]3− One-pot 
Hydrolysis of dimethyl 

methylphosphonate 
[123] 

78  NENU-15 [SiW12O40]4− One-pot Reduction of NO [124] 

79  NENU-1a H4SiW12O40 One-pot 
Dehydration of 

methanol 
[125] 

80  Basolite F300 H3PW12O40 Impregnation Dehydration of ethanol [126] 

81  NENU-3a H3PW12O40 One-pot Hydrolysis of esters [43] 

82  
NH2-MIL-101(Fe) 

MIL-101(Cr) 

TBA4[PW11Fe(

H2O)O39] 
Impregnation 

Ring opening of styrene 

oxide with aniline 
[127] 

83  MIL-100(Fe) 
[PMo11Mn(H2

O)O39]5− 
One-pot 

Reduction of 

p-nitrophenol 
[128] 

84  MOF-808 [H3PW12O40] One-pot 

Friedel-Crafts acylation 

of anisole with benzoyl 

chloride 

[129] 

85  MIL-101(Cr) H3PW12O40 Impregnation 

Pechmann, 

esterification, and 

Friedel-Crafts acylation 

[130] 

86  UiO-66 
Cs2.5H0.5PW12O

40 
One-pot 

Acidolysis of soybean 

oil 
[131] 

87  Cu-based MOF 
H4SiW12O40.x

H2O 
One-pot 

Azide-alkyne click 

reaction 
[132] 

88  NU-1000 H3PW12O40 Impregnation 
Isomerization/dispropor

tionation of o-xylene 
[133] 

89  MIL-101(Cr) H3PW12O40 One-pot 
Hydroformylation of 

1-octene 
[134] 

90  MIL-101(Cr) H3PW12O40 One-pot 
Cycloaddition of CO2 to 

styrene oxide 
[135] 

Electrocatalysis 

91  MIL-101(Cr) 
[Co(H2O)2(PW

9O34)2]10− 
Ion exchange H2O oxidation [136] 

92  ZIF-8 
[CoW12O40]6− 

H4SiW12O40 
One-pot H2O oxidation 

[137,

138] 
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93  ZIF-67 H3PW12O40 

Core–shell 

coating of 

POM 

H2O oxidation [139] 

94  

Ag-based 

metal-organic 

nanotubes 

H3PW12O40 

H4SiW12O40 
One-pot H2 evolution [140] 

95  

Cu-based 

metal-organic 

nanotubes 

K6P2W18O62 

H6As2W18O62 
One-pot H2 evolution [141] 

96  MIL-101(Cr) [PMo10V2O40]5− Impregnation 
Oxidation of ascorbic 

acid 
[142] 

Photocatalysis 

97  NH2-MIL-101(Al) 
K6[a-AgPW11O

39] 
Impregnation 

Degradation of 

Rhodamine B 
[143] 

98  Cu-based MOF H4SiMo12O40 One-pot 
Degradation of 

Rhodamine B 
[144] 

99  MFM-300(In) H3PW12O40 
In situ 

hot-pressing 

Degradation of 

sulfamethazine 
[49] 

100  MOF-545 
[(PW9O34)2Co4(

H2O)2]10− 
Impregnation Water oxidation 

[145,

146] 

101  MIL-100(Fe) 

[CoIICoIIIW11O

39(H2O)]7− 

[Co4(PW9O34)2(

H2O)2]10− 

One-pot Water oxidation [147] 

102  MIL-100(Fe) H3PMo12O40 One-pot 
Oxidation of alcohols 

and reduction of Cr (VI) 
[148] 

103  Zn-based MOF [BW12O40]5− One-pot 
Coupling of amines and 

epoxidation of olefins 
[149] 

104  UiO-66-NH2 H3PW12O40 One-pot 

H2 

evolution/degradation 

of Rhodamine B 

[150] 

105  NH2-MIL-53 H3PW12O40 Impregnation H2 evolution [151] 

106  UiO-67 
[P2W18O62]6− 

H4SiW12O40 
One-pot H2 evolution 

[152,

153] 

107  
UiO derived 

structure 

[Ni4(H2O)2(P

W9O34)2]10− 
One-pot H2 evolution [47] 

108  MIL-101(Cr) 

α-PW15V3, 

α-P2W17Ni, 

α-P2W17Co 

One-pot H2 evolution [154] 

109  SMOF-1 [P2W18O62]6− Impregnation H2 evolution [155] 

110  Cu-BTC [PTi2W10O4]7− One-pot CO2 reduction [42] 

BBPTZ = 4,4′-bis(1,2,4-triazol-1-ylmethyl)biphenyl]; BBTZ = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene; 

trz = 1,2,4-triazole; imi = imidazole; ampyd = 2-aminopyridine; bpy = bipyridine; Phen = 

1,10-phenanthroline; bipy = 4,4′-bipyridine; Hpzc = pyrazine-2-carboxylic acid, pz = pyrazine; bbi = 

1,1′-(1,4-butanediyl)bis(imidazole); DTP = dodecatungstophosp; TBA = tetrabutylammonium. 

3.1.2. Condensation Reaction 

POM@MOF has revealed potential applications in a range of condensation reactions for 

producing value-added cyclic organic compounds. Recently, Malkar et al. compared the catalytic 

performance of three different catalysts, namely 20%-Cs-DTP-K10, 18%-DTP@ZIF-8, and 

Al0.66-DTP@ZIF-8 (DTP = dodecatungstophosp), for the aldol condensation of HMF 
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(5-hydroxymethylfurfural), as shown in Figure 6 [95]. It has been proved that the substitution of 

protons of heteropolyacids with metal ions increases the mobility of protons, which results in an 

enhancement of the acidity. Based on NH3-TPD analysis, Cs-DTP-K10 displays the highest acidity 

(1.51 mmol g−1), whereas DTP@ZIF-8 and Al-DTP@ZIF-8 possess 0.44 and 0.54 mmol g−1 of acidic 

sites, respectively. Cs-DTP-K10, with the highest acidity, showed the highest activity for the aldol 

condensation of HMF and acetone to selectively produce the desired C9 product (71.6% after 6 h of 

reaction), while the selectivity was only 43.1%. Although the total number of acidic sites was much 

lower in the case of the Al-DTP@ZIF-8 catalyst, a good conversion of 63.1% was still obtained after 6 

h of reaction, which is comparable to the former value. Notably, the Al-DTP@ZIF-8 catalyst 

displayed a much higher selectivity (~92%) towards the C9 product compared to C15. The lowest 

conversion of HMF was achieved in the case of the 18%-DTP@ZIF-8 material with the lowest acidity. 

However, a high selectivity towards the C9 product was observed. The higher selectivity towards 

the C9 adduct, as the desired product in the presence of the DTP@ZIF-8 and Al-DTP@ZIF-8 

catalysts, confirms the shape selectivity supplied by the small pore diameter of ZIF-8, which can 

prevent the production of the C15 adduct. 

 

Figure 6. Aldol condensation of 5-hydroxymethylfurfural (HMF) with acetone over 

Al-DTP@ZIF-8. Reproduced with permission from [95]. Copyright (2019), American Chemical 

Society. 

Another example of the use of MOFs in condensation reactions is the well-known MIL-101. For 

this purpose, PW12@MIL-101(Cr) composites were synthesized through the direct hydrothermal 

procedure or post-synthesis modification route [98]. The acidic sites within the MIL-101 and 

PW12@MIL-101(Cr) materials are desirable for catalyzing the Baeyer condensation of benzaldehyde 

and 2-naphthol, in the three-component condensation of benzaldehyde, 2-naphthol, and acetamide, 

as depicted in Figure 7. While no product was produced in the absence of catalysts, a high yield of 

around 95% was observed for the formation of 1-amidoalkyl-2-naphthol at 130 °C using microwave 

heating for 5 min. Moreover, no leaching of the active sites was observed, and the catalyst could be 

reused for four cycles without a notable loss in the product yield.  

 

Figure 7. Condensation of benzaldehyde, 2-Naphthol, and acetamide. Reprinted with permission 

from [98]. Copyright (2012), American Chemical Society. 
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In addition, PW12 clusters were uniformly encapsulated in the cages of MIL-101 as a selective 

heterogeneous catalyst for the self-condensation of cyclic ketones [97]. As can be observed in Figure 

8, the self-condensation of cyclopentanone can result in three different products based on the active 

sites in the applied catalysts. By using PW12 as the catalyst, a conversion of around 78% could be 

obtained after 24 h reaction to trindane as the main product. However, PW12@MIL-101 exhibits a 

considerably higher selectivity (>98%) towards the mono-condensed component 

(2-cyclopentylidenecyclopentanone) as the desired product due to the possibility of shape-selective 

catalysis. The PW12@MIL-101 catalyst could be recycled up to five cycles, with no obvious reduction 

in the conversion and selectivity. 

 

Figure 8. Reaction figure of a cyclopentanone self-condensation reaction. Adapted with permission 

from [97]. Copyright (2015), Royal Society of Chemistry. 

3.1.3. Esterification Reaction 

Modified MOFs with POMs can be employed as active catalysts for a wide range of 

esterification reactions. Biodiesel, as a secure and sustainable energy source, is a promising 

alternative for fossil fuel-based energy systems [156]. Among the various methods for biodiesel 

production, transesterification is the most common procedure. Recently, Xie et al. investigated the 

catalytic one-pot transesterification-esterification of acidic vegetable oil transesterification reaction 

over a functionalized UiO-66-2COOH with a Keggin-type POM, namely, 

AILs/POM/UiO-66-2COOH (AIL = sulfonated acidic ionic liquid) (see Figure 9) [114]. The prepared 

catalyst displayed synergistic benefits arising from the introduction of AIL as Brønsted acid sites. 

The presence of both Brønsted acid sites of ILs and Lewis acid sites of POM promoted the catalytic 

reaction for green biodiesel production. The control experiments showed that all of the applied 

POMs (PW12, SiW12, and PMo12) could convert soybean oil to biodiesel with a high catalytic 

performance (conversion of ~100%). However, challenges associated with the work-up and 

recyclability of these homogeneous catalysts limit their potential application. The pristine 

UiO-66-2COOH material presented a poor activity, with an oil conversion of around 8% because of 

its insufficient acidic properties. In addition, the PW12@UiO-66-2COOH, SiW12@UiO-66-2COOH, 

and PMo12@UiO-66-2COOH composites suffered from sluggish reaction kinetics with conversions 

below 30% towards biodiesel production, which could have been due to the lack of enough acidic 

sites required to advance the catalytic reaction. Another control experiment was performed by 

using the sulfonic acid-functionalized IL as the homogeneous catalyst, affording a high catalytic 

activity of around 99% conversion. It is interesting to note that AILs/POM/UiO-66-2COOH catalysts 

can combine the advantages of POMs, AILs, and porous MOFs and therefore present the highest 

catalytic performance in the mentioned reaction (conversion > 90%). Furthermore, the strong 

interaction between the POMs and AILs was able to hinder the leaching of active components into 

the reaction media, which further resulted in no notable loss in the catalytic conversion of oil to 

biodiesel after five consecutive catalytic cycles.  
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Figure 9. Synthesis procedure of the AILs/HPW/UiO-66-2COOH catalyst, and one-pot 

transesterification-esterification of acidic vegetable oils. Reprinted from [114]. Copyright (2019), 

with permission from Elsevier. 

In 2015, Liu et al. described an effective procedure for designing NENU-3a with different 

crystal morphologies (cubic and octahedral) comprised of a Cu-BTC skeleton and encapsulated 

phosphotungstic acid catalyst [113]. The morphology of this framework was generated by applying 

the method of coordination modulation, using P-toluic acid as the modulator. The NENU-3a with 

cubic crystals ((100) facets) could effectively promote the conversion of long-chain (C12-C22) fatty 

acids into corresponding monoalkyl esters (>90% yield) compared to the octahedral counterpart 

(<22% yield). Moreover, the cubic NENU-3a catalyst was highly robust and could be reused for five 

reaction runs with a preserved structure and catalytic activity. This report confirms the vital impact 

of morphological control on MOFs for improving the facet exposure of catalytic sites, which 

accordingly results in an enhancement of the catalytic performance, especially for bulky substrates 

with limited access to the catalytic active sites within the pores of MOF catalysts. Another 

important feature of MOFs is the possibility to control the product selectivity arising from the pore 

size effect of MOFs. Within this context, Zhu et al. studied the selective esterification of glycerol 

using a MOF-supported POM catalyst [106]. The catalytic performance of the obtained 

POM@Cu-BTC catalyst was compared to the metal oxide-supported POMs as the reference 

materials. Since there was no pore limitation impact using the POM@metal-oxide catalyst, the 

conversion of glycerol stopped at the acid stage without further reaction and was free to be released 

from the reaction site (Figure 10). However, when the POM@Cu-BTC catalyst was applied, 

diffusion of the acid product within the MOF pores was limited and further reaction of the acid 

product produced the corresponding ester compound. 

 

Figure 10. Diffusion limited glycerol transformation on MOF-POMs. Reprinted with permission 

from [106]. Copyright (2015), Royal Society of Chemistry. 
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3.1.4. Other Organic Transformations 

POMs exhibit great potential as solid acid catalysts because of their strong Brønsted acidity. 

The first report on a well-defined MOF-supported POM compound, which behaved as a true 

heterogeneous acid catalyst, was reported by Su et al. [43]. In this work, a series of POM@MOF 

catalysts were synthesized using a one-pot method. The POM@MOF compound, which contained 

the strongest Keggin Brønsted acid PW12, was examined in the hydrolysis of ethyl acetate in the 

presence of an excess amount of water. This catalyst, denoted as NENU-3a, exhibited almost full 

conversion (>95%) after approximately 7 h of reaction, which is far more superior than most 

inorganic solid acids and comparable to organic solid acids. More specifically, when the activity 

was reported per unit of acid, NENU-3a was 3-7 times more active than H2SO4, PW12, nafion-H, and 

Amberlyst-15. In addition to this, no deactivation of the acid sites by water was observed and no 

leaching of the POM was noted up to at least 15 cycles. Later on, the same group reported the use of 

POMs as templates for the construction of novel hybrid compounds, for which the properties of the 

POM could be tailored towards a specific application [123–125]. One of these targeted applications 

was the adsorption and subsequent hydrolysis of the nerve gas dimethyl methylphosphate to 

methyl alcohol, for which the conversion increased up to 93% when the temperature was raised to 

50 °C [123]. Recycling tests demonstrated that the structural integrity was preserved up until at 

least 10 cycles. However, it is important to note here that a stabilizing effect of the POM on the MOF 

will only be obtained when the shape, size, and symmetry of the POM match the MOF host [135]. 

This stabilizing effect even allowed the application of POM@MOF catalysts in aggressive reactions, 

as was demonstrated in the very nice work of Hupp, Farha, and Notestein [133]. In this study, the 

Zr-based MOF, NU-1000, was loaded with H3PW12O40 for its use in the strong acid-catalyzed 

reaction of o-xylene isomerization/disproportionation at 250 °C (see Figure 11). At low POM 

loadings (0.3 to 0.7 POM per Zr6 node), no activity was observed, which was due to the collapse of 

the POM and/or MOF structure upon activation or at the start of the reaction. However, when the 

loading was increased to its maximum, with 1 Keggin unit per unit cell of NU-1000, the hybrid 

catalyst exhibited an initial reactivity in the examined C-C skeletal rearrangement reaction which 

was even higher than that of the reference WOx-ZrO2 catalyst.  

 

Figure 11. Phosphotungstic acid encapsulated in NU-1000 for its use in the aggressive hydrocarbon 

isomerization reaction. Reprinted with permission from [133]. Copyright (2018), American 

Chemistry Society. 

While, in the previously discussed studies, the Keggin ion acted as a template to stabilize the 

microporous/mesoporous structure of the MOF, the group of Martens et al. used this templating 

mechanism to introduce mesopores separated by uniform microporous walls in a single crystal 

structure [121] (see Figure 12). More specifically, a hierarchical variant of the Cu-based MOF, 

Cu-BTC, was synthesized using a dual templating approach in which the Keggin ions served as a 

molecular template for the structural motif of the MOF, while the surfactant 

cetyltrimethylammonium bromide was used to introduce mesoporosity. The resulting mesoporous 

MOF, denoted as COK-15, was investigated in the alcoholysis of styrene oxide, which often suffers 

from a low selectivity. The COK-15 catalyst not only exhibited a remarkable activity (100% 

conversion), but also achieved 100% selectivity for 2 methoxy-2 phenylethanol after 3 h of reaction 
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at 40 °C. For comparison, the microporous POM@Cu-BTC and Cu-BTC material only showed 40% 

and 2% conversion, respectively. The authors addressed the good activity of the COK-15 to the 

mesoporous feature, which allowed efficient mass transport. Moreover, the catalyst could be 

recycled for at least four runs, with a negligible loss in activity and selectivity. 

 

Figure 12. A copper benzene tricarboxylate metal–organic framework, COK-15, with a wide 

permanent mesoporous feature stabilized by Keggin POM ions for the methanolysis of styrene 

oxide. Adapted with permission from [121]. Copyright (2012), American Chemistry Society. 

Besides this increase in stability after the embedding of the POM in a MOF support, several 

groups have demonstrated the mutual activation of the POM guest and MOF support [32,119,127]. 

A very special and extreme example of such a synergism was demonstrated in the work of Kögerler 

et al. [128]. In this work, a POM@MOF composite was prepared through a hydrothermal reaction in 

which an Mn-based POM was added to the reaction mixture to synthesize MIL-100. The obtained 

30 wt% loaded Mn-POM@MIL-100 was evaluated for its catalytic performance in the reduction of 

p-nitrophenol to p-aminophenol in the presence of NaBH4. While both the individual compounds 

exhibited no catalytic activity, the composite showed an excellent performance (the activity and rate 

constant at 50 °C were 683 L g−1 s−1 and 0.23 min−1, respectively), which was even comparable to 

those observed for noble metal-based catalysts. The authors stated that the high catalytic activity 

originated from the fact that the Mn-POM facilitated the electron transfer from BH4− to the Fe3+ 

Lewis acid sites of the MOF, as they assumed that the MIL-100 alone could not accept electrons 

directly from BH4−. Additionally, the group of Shul observed a distinct acid-base synergy upon 

examination of the core–shell structured heteropoly acid-functionalized ZIF-8 in the 

transesterification of rapeseed oil with methanol to produce biodiesel [46]. More than 95% of the 

rapeseed oil was converted to biodiesel due to the simultaneous presence of the acid functionalities 

of the POM and the basicity of the imidazolate groups of the MOF, whereas the pure POM and 

ZIF-8 catalysts showed a catalytic performance of 61% and 32%, respectively. Moreover, the strong 

chemical O-N bonding between the Keggin and the imidazole units ensured a good recyclability, 

with no noticeable decrease in the catalytic performance after five cycles and no POM leaching.  

3.2. Electrocatalysis 

Besides the use of POM@MOF hybrids in organocatalysis, POMs also exhibit interesting 

electrocatalytic properties as they can undergo fast and reversible multi-electron transfers [157]. 

Within this context, POMs have already shown great potential in the electrochemical oxygen 

evolution reaction (OER) in a homogenous manner [158]. Despite the remarkable progress in this 

field, there are only a few reports on the encapsulation of POMs in the cages of MOFs for 

electrocatalytic water oxidation, as can be seen in Table 2. This is probably due to the fact that the 

majority of MOFs possess a low electrical conductivity and high hydrophobicity. The first report on 

the encapsulation of an unsubstituted Keggin POM in a MOF to perform electrocatalytic water 
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oxidation was reported by Das et al. [137]. More specifically, a one-pot synthesis was performed to 

include the [CoW12O40]6− anion in the size matching cage of ZIF-8 (see Figure 13). During the 

electrochemical measurements, performed at pH 1.9, the authors observed a clear shift to a less 

anodic potential for the redox CoIII/CoII couple in the cyclic voltammogram of POM@MOF with 

respect to that of the uncapsulated POM (from 1.14 V for the Keggin POM to 0.97 V for the 

composite material). In addition to this, the POM@MOF catalyst exhibited an excellent stability as 

only a very small drop in the catalytic current was observed after 1000 catalytic cycles and no 

leaching of Co species was observed. It is, however, important to note here that, although the 

catalyst exhibited a high turnover frequency (TOF = 12.5 s−1 based on the quantitative oxygen 

evolution) and an excellent faradaic efficiency of 95.7%, a rather high overpotential was required 

(784.19 mV at a current density of 1 mA cm−2).  

 

Figure 13. Encapsulation of an inactive Keggin POM in ZIF-8 to become an active oxygen evolution 

reaction (OER) catalyst. Reprinted with permission from [137]. Copyright (2018), John Wiley and 

Sons. 

In a very recent report of the same group, a redox inactive SiW12 POM was used to lower the 

required overpotential [138]. The co-encapsulation of this POM together with the true catalyst, an 

Fe(salen) complex, within ZIF-8 resulted in a decrease of the overpotential of more than 150 mV. In 

the absence of the encapsulated POM, the Fe-salen@ZIF-8 required an overpotential of 672.9 mV to 

attain a current density of 1 mA cm−2, while in the presence of the POM, the overpotential decreased 

to 516 mV. The authors attributed this observation to the fact that the POM not only increased the 

hydrophilicity of the catalyst and facilitated the charge conduction in ZIF-8, but also ensured a 

higher loading of the Fe-salen complex within ZIF-8. Another way to decrease this overpotential for 

oxygen evolution and thus improve the hydrogen production efficiency was reported by Pang and 

co-workers [139]. In this work, the authors demonstrated the successful coating of ZIF-67 with a 

catalytically active Keggin POM, H3PW12O40. The unique yolk/shell structure of the ZIF-67@POM 

catalyst ensured a high electrical conductivity and fast charge transfer, which resulted in a 

significant reduction of the overpotential. From all of the examined ZIF-67@POM hybrids, the 

6-ZIF-67@POM catalyst exhibited the smallest Tafel slope (58 mV dec−1) and lowest overpotential 

values (287, 313, and 338 mV at current densities of 10, 20, and 30 mA cm−2, respectively), which are 

even comparable to those observed for RuO2, which is one of the most efficient and well-known 

electrocatalysts for the OER reaction [159].  

Besides these few examples on OER, POMs have also shown great potential in the second half 

reaction for water-splitting, namely the hydrogen evolution reaction (HER) [160]. However, to solve 

their shortcomings, particularly the limited stability of POMs in the required highly acidic pH for 

HER, Zhang et al. encapsulated POMs in metal–organic nanotubes (MONTs), which can be 

considered as a special kind of MOF [140,141]. Upon encapsulation of the POMs, using a one-pot 

synthesis method, the chemical stability of both the POM and MONTs increased. The POMs served 

as a kind of template to construct the MONTs, while the MONTs ensured a sort of a shield to 
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increase the chemical stability of the POM. The best POM@MONTs electrocatalyst displayed an 

overpotential of 131 mV (at a current density of 10 mA cm−2), which is far more superior than other 

POM-based MOFs (which showed overpotentials above 200 mV) [161]. 

3.3. Photocatalysis 

Given the extraordinarily large-scale utilization of solar energy, POM@MOF materials have 

become particularly attractive for their use in visible-light-driven photocatalytic reactions. In 

particular, their use as catalysts for proton reduction has received considerable attention in recent 

years. Within this context, Lin’s group reported on the integration of the two required components, 

namely the photosensitizer [Ru(bpy)3]2+ or [Ir(ppy)2(bpy)]+ and hydrogen evolution catalyst, into 

Zr-based MOFs to perform proton reduction [47,152]. For example, by using a one-pot 

self-assembly synthesis strategy, a transition metal Ni-based anionic POM was embedded into the 

highly cationic MOF by using a pre-functionalized [Ir(ppy)2(bpy)]+-derived dicarboxylate ligand 

[47]. In contrast to the homogeneous mixture of POM and the Ir-functionalized ligand, which only 

produced trace amounts of H2 (TON = 2), a TON of 1476 was observed for the 

hierarchically-organized POM@MOF assembly, which allowed facile electron transfer due to the 

proximity of the Ni4P2 to multiple photosensitizers in Ni4P2@MOF. Another simple strategy for 

accommodating antenna molecules into MOFs was demonstrated in the work of Wang et al., in 

which several transition metal-substituted (V, Ni, and Co) Wells-Dawson-type POM@MIL-101(Cr) 

were prepared using one-pot synthesis [154]. Prior to the photocatalytic evaluation, the cationic 

photosensitizer [Ru(bpy)3]2+ was adsorbed onto the POM@MOF, for which they observed that the 

adsorption ability was significantly enhanced upon increasing the POM loading. The photocatalytic 

performance of the three POM@MOF frameworks was significantly higher in comparison to their 

homogeneous counterpart and remained nearly unchanged after three additional cycles. Another 

very nice work in which [Ru(bpy)3]2+ was also used as a photosensitizer was reported by Li et al. 

[155]. They reported the first water-soluble supramolecular MOF, denoted as SMOF-1, which was 

built by a self-assembly process from the hexaarmed [Ru(bpy)3]2+-based precursor and cucurbit uril 

(CB) (see Figure 14). The resulting polycationic SMOF-1 exhibited only a weak gas adsorption 

ability, but was able to accommodate the bulky redox active [P2W18O62]6− anion. The hydrogen 

production of the resulting WD-POM@SMOF-1 was about four times higher than that of its 

heterogeneous system. More specifically, in acidic media and using methanol as a sacrificial 

electron donor, the TON and H2 production rate was 392 and 3.553 μmol g−1 h−1, respectively. The 

authors attributed this high activity to the unique one-cage-one-guest encapsulation pattern, which 

allowed (i) a quick diffusion and close contact of the hydronium and methanol molecules and (ii) 

facile electron transfer from the excited [Ru(bpy)3]2+ to the WD-POM. In addition to this, the catalyst 

could be recovered by evaporation of the solvent and could be reused at least six times without a 

significant decrease in TON. 

 

Figure 14. The building blocks used for the synthesis of the metal-cored supramolecular organic 

framework, SMOF-1. Reprinted with permission from [155]. Copyright (2016), Springer Nature. 
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It is, however, important to note here that in the previous studies, the high-cost noble 

[Ru(bpy)3]2+ and [Ir(ppy)2(bpy)]+ have been used as photosensitizers. The first noble metal-free 

photoactive POM@MOF catalyst was reported by Dolbecq et al. [145]. In this work, a redox active 

Co-based POM was embedded in a light-harvesting porphyrinic MOF, denoted as MOF-545, for the 

visible-light-driven oxidation of water (Figure 15) or, in other words, both the photosensitizer and 

the catalyst were incorporated into the same porous material. The authors observed that the O2 

production started upon exposure to light and increased linearly over time, until a plateau was 

reached after 1 h of catalysis. The authors stated that the unique activity of this “three in one” 

photoactive catalyst was the result of (i) the immobilization of the porphyrin ligand in the MOF, 

which increased its oxidizing power, and (ii) the confinement of the Co-POM in the pores of 

MOF-545, which resulted in an increased stabilization of the POM catalytic sites. Nevertheless, the 

reuse of this POM@MOF catalyst was hampered due to a partial loss of the powder during 

centrifugation. To overcome this issue, the authors deposited a thin film of the latter POM@MOF on 

indium tin oxide, which served as a conducting support to allow better electronic transport, but 

also permitted easier reuse [146]. The films obtained through drop casting not only exhibited a 

significantly better performance in photocatalytic water oxidation (TON = 1600 and TOF = 0.467 s−1) 

in comparison to the POM@MOF in suspension (TON = 70 and TOF = 0.04 s−1), but also 

outperformed the previously homogeneous P2W18Co4-based photosystems (TON = 75) [162]. 

 

Figure 15. A fully noble metal-free POM@MOF catalyst for the photocatalytic oxidation of water. 

Reprinted with permission from [145]. Copyright (2018), American Chemistry Society. 

However, it is important to note here that in the previously presented studies, a sacrificial 

donor or acceptor was required for the photocatalytic process. In a very recent work by Niu and 

co-workers, the assembling of a photosensitizer, electron donor, and acceptor into one single 

framework was reported [149]. For the synthesis of this Zn-based framework, the photosensitizer 

N,N′-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide (DPNDI) was used as the organic ligand, 

while pyrrolidine-2-yl-imidazole and the [BW12O40]5− anion were introduced, respectively, as an 

electron donor and electron acceptor (see Figure 16). The resulting Zn-DPNDI-PYI catalyst was 

examined in the oxidative coupling of benzylamine, exhibiting a conversion of 99% after 16 h of 

reaction. This high activity was not only the result of the consecutive photo-induced electron 

transfer (conPET) process, but was also assigned to the long-lived charge separated state.  
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Figure 16. Zn-DPNDI-PYI as photocatalyst for the coupling of primary amines and oxidation of 

olefins with air under visible light. Reprinted from [149]. Copyright (2019), with permission from 

Elsevier. 

4. Summary and Outlook 

Metal–organic frameworks exhibiting well-defined cages, large surface areas, and a high 

thermal and chemical stability are excellent hosts for encapsulating polyoxometalates. More than 

100 studies on such POM@MOF hybrids have appeared in the last decade. In this review, we 

mainly focused on the common synthetic aspects and catalytic applications of POM@MOF hybrids 

in organocatalysis, electrocatalysis, and photocatalysis. More specifically, the activity, recyclability, 

stability, and interesting synergetic functions of POM@MOF were discussed.  

The size of the pores and the aperture of the pore windows are very critical parameters in the 

design of a POM@MOF. The embedding of POMs into MOFs not only allows the shortcomings of 

POMs to be overcome, but also ensures the use of the unique advantages of MOFs. The rise of 

POM@MOF systems is mainly attributed to the excellent dispersion and subsequent stability of the 

POM in the MOF host. The unique cages and windows and the tunable chemical environment of 

MOFs enable interesting interactions and synergic effects between POM and MOFs, thus creating 

excellent novel heterogeneous catalysts. 

Although POM@MOF hybrid materials have made tremendous progress in recent years, many 

challenges still need to be addressed. First of all, the interaction between POMs and MOFs is often 

limited to weak electrostatic interactions, which can result in POM leaching during the catalysis. To 

this end, stronger interactions, such as covalent bonds between the MOF host and the encapsulated 

POM, would allow a further increase of the POM@MOF reusability in catalysis. Secondly, at this 

moment, there is still too much ‘trial and error’ involved to obtain a good control on the position 

and distribution of POMs inside MOF cages/channels. Thirdly, very little is known about the 

synergetic effects and electron transfer mechanism in catalytic reactions. To address this problem, 

theoretical calculations combined with in-situ and ex-situ characterization techniques would 

provide a better understanding of the synergetic effects and electron transfer mechanism. Finally, 

up until now, only some well-known archetypical POMs have been encapsulated in MOFs. New 

and innovative types of POMs (such as V-centered POMs) with a proven excellent performance in 

oxidation and photocatalytic reactions should be combined with MOFs to further enhance the 

application range of these hybrids. We have no doubt that several exciting new (catalytic) 

applications will be reported in the next months and years in this strongly growing field of 

research. 
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