1,017,871 research outputs found

    Zinc Nutrition of Rice Plants as Influenced by Seed Germinated in Zinc Solutions

    Get PDF
    In recent years a physiological disorder of rice (Oryza sativa L.) seedlings growing in soils high in exchangeable calcium has been diagnosed as zinc deficiency. Calculations show that less than 30 g of zinc is needed to satisfy the nutrition of a hectare of 6-8-wk-old rice plants. Rice seed was soaked and germinated in dilute solutions of zinc ethylenediamine tetraacetate, zinc sulfate and zinc lignosulfonate prior to planting in greenhouse pots containing a zinc-deficient soil. The rice plants grown from the zinc-treated seed produced more growth and sorbed more zinc than rice plants grown from untreated seed

    Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Get PDF
    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations

    Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation.

    Get PDF
    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide

    The Relationship between Zinc Intake and Serum/Plasma Zinc Concentration in Children: A Systematic Review and Dose-Response Meta-Analysis

    Get PDF
    Recommendations for zinc intake during childhood vary widely across Europe. The EURRECA project attempts to consolidate the basis for the definition of micronutrient requirements, taking into account relationships among intake, status and health outcomes, in order to harmonise these recommendations. Data on zinc intake and biomarkers of zinc status reported in randomised controlled trials (RCTs) can provide estimates of dose-response relationships which may be used for underpinning zinc reference values. This systematic review included all RCTs of apparently healthy children aged 1–17 years published by February 2010 which provided data on zinc intake and biomarkers of zinc status. An intake-status regression coefficient was calculated for each individual study and calculated the overall pooled and SE using random effects meta-analysis on a double log scale. The pooled dose-response relationship between zinc intake and zinc status indicated that a doubling of the zinc intake increased the serum/plasma zinc status by 9%. This evidence can be utilised, together with currently used balance studies and repletion/depletion studies, when setting zinc recommendations as a basis for nutrition policies

    A study of zinc resistance and accumulation of zinc in scapania undulata (L) Dum

    Get PDF
    Scapania undulata (L.) Dum. is a bryophyte which is common in the upland streams of the North East of England. The zinc resistance of S. undulata from zinc enriched and from low zinc sites was investigated by means of laboratory toxicity tests and field transplants. The results obtained do not suggest that the populations of S. undulata at the zinc enriched sites studied are genetically adapted, zinc resistant ecotypes of the species. The enrichment ratio of zinc in S. undulata at a number of sites was investigated and considerable variation between sites was found. The effects of the concentration of zinc in the medium, light and temperature on the uptake of zinc by S. undulata under aboratory conditions were also investigated. The rate of uptake of zinc was found to increase as the concentration of zinc in the medium increased, up to a concentration of 60 mg 1(^-1). The saturation point was found to be approximately the same for a two day period as for the initial half hour, with some indication of ^ small increase In the rate of uptake of zinc at concentrations greater than 60 mg 1(^-1) over the two-day period. Material incubated in medium containing 1 mg 1(^-1) zinc in the light for a period of four days was found to contain approximately 15% more zinc than material incubated in darkness. The rate of uptake of zinc by dead material at 32 ºC from medium containing 2 mg 1(^-1) zinc was found to be greater than that of live material at 14 ºC and there was some indication of a greater rate of uptake by live material at 24ºC than at l4 ºC. The results of these experiments are discussed in terms of the relative importance's of active and passive mechanisms of uptake of zinc in S. undulata and the validity of using this species for monitoring the levels of zinc in stream waters

    Zinc accumulation and utilisation by wine yeasts

    Get PDF
    The present study has focused on the accumulation of zinc by wine yeast strains of Saccharomyces cerevisiae during fermentation of both grape juice and chemically defined medium with different carbohydrates and at varying levels of zinc. The results have shown that zinc accumulation by wine yeast was very rapid with all zinc being removed from the medium by yeast cells within the first two hours. Zinc uptake was stimulated by the presence of sucrose. Zinc affected fermentation progress at defined levels, with optimal concentrations at 1.5–2.5 ppm, depending on yeast strain and zinc bioavailability. The bioavailability of metal ions in grape must and the roles of metals in wine yeast physiology are aspects poorly understood by enologists. In brewing, it has long been recognized that malt wort may be zinc deficient and brewers often carry out zinc supplementations to avoid sluggish and incomplete fermentations. In winemaking, zinc levels in grape musts may be compromised depending on the bioavailability of zinc ions in vineyard soils as well as treatments with fertilizers and fungicides during grape growing. As a consequence, sub-optimal zinc levels in grape musts may negatively influence the fermentative performance of yeasts. We believe that optimization of metal ion bioavailability will improve yeast fermentation performance in industrial processes and this study addresses some issues relating to zinc in enology

    A Review of Dietary Zinc Recommendations

    Get PDF
    Background. Large discrepancies exist among the dietary zinc recommendations set by expert groups. Objective. To understand the basis for the differences in the dietary zinc recommendations set by the World Health Organization, the U.S. Institute of Medicine, the International Zinc Nutrition Consultative Group, and the European Food Safety Agency. Methods. We compared the sources of the data, the concepts, and methods used by the four expert groups to set the physiological requirements for absorbed zinc, the dietary zinc requirements (termed estimated and/or average requirements), recommended dietary allowances (or recommended nutrient intakes or population reference intakes), and tolerable upper intake levels for selected age, sex, and life-stage groups. Results. All four expert groups used the factorial approach to estimate the physiological requirements for zinc. These are based on the estimates of absorbed zinc required to offset all obligatory zinc losses plus any additional requirements for absorbed zinc for growth, pregnancy, or lactation. However, discrepancies exist in the reference body weights used, studies selected, approaches to estimate endogenous zinc losses, the adjustments applied to derive dietary zinc requirements that take into account zinc bioavailability in the habitual diets, number of dietary zinc recommendations set, and the nomenclature used to describe them. Conclusions. Estimates for the physiological and dietary requirements varied across the four expert groups. The European Food Safety Agency was the only expert group that set dietary zinc recommendations at four different levels of dietary phytate for adults (but not for children) and as yet no tolerable upper intake level for any life-stage group

    Low zinc status and absorption exist in infants with jejunostomies or ileostomies which persists after intestinal repair.

    Get PDF
    There is very little data regarding trace mineral nutrition in infants with small intestinal ostomies. Here we evaluated 14 infants with jejunal or ileal ostomies to measure their zinc absorption and retention and biochemical zinc and copper status. Zinc absorption was measured using a dual-tracer stable isotope technique at two different time points when possible. The first study was conducted when the subject was receiving maximal tolerated feeds enterally while the ostomy remained in place. A second study was performed as soon as feasible after full feeds were achieved after intestinal repair. We found biochemical evidence of deficiencies of both zinc and copper in infants with small intestinal ostomies at both time points. Fractional zinc absorption with an ostomy in place was 10.9% ± 5.3%. After reanastamosis, fractional zinc absorption was 9.4% ± 5.7%. Net zinc balance was negative prior to reanastamosis. In conclusion, our data demonstrate that infants with a jejunostomy or ileostomy are at high risk for zinc and copper deficiency before and after intestinal reanastamosis. Additional supplementation, especially of zinc, should be considered during this time period
    corecore