7 research outputs found

    Memory Page Stability and its Application to Memory Deduplication

    Get PDF
    In virtualized environments, typically cloud computing environments, multiple virtual machines run on the same physical host. These virtual machines usually run the same operating systems and applications. This results in a lot of duplicate data blocks in memory. Memory deduplication is a memory optimization technique that attempts to remove this redundancy by storing one copy of these duplicate blocks in the machine memory which in turn results in a better utilization of the available memory capacity.In this dissertation, we characterize the nature of memory pages that contribute to memory deduplication techniques. We show how such characterization can give useful insights towards better design and implementation of software and hardware-assisted memory deduplication systems. In addition, we also quantify the performance impact of different memory deduplication techniques and show that even though memory deduplication allows for a better cache hierarchy performance, there is a performance overhead associated with copy-on-write exceptions that is associated with diverging pages.We propose a generic prediction framework that is capable of predicting the stability of memory pages based on the page flags available through the Linux kernel. We evaluate the proposed prediction framework and then discuss various applications that can benefit from it, specifically memory deduplication and live migration

    High-Performance and Low-Power Magnetic Material Memory Based Cache Design

    Get PDF
    Magnetic memory technologies are very promising candidates to be universal memory due to its good scalability, zero standby power and radiation hardness. Having a cell area much smaller than SRAM, magnetic memory can be used to construct much larger cache with the same die footprint, leading to siginficant improvement of overall system performance and power consumption especially in this multi-core era. However, magnetic memories have their own drawbacks such as slow write, read disturbance and scaling limitation, making its usage as caches challenging. This dissertation comprehensively studied these two most popular magnetic memory technologies. Design exploration and optimization for the cache design from different design layers including the memory devices, peripheral circuit, memory array structure and micro-architecture are presented. By leveraging device features, two major micro-architectures -multi-retention cache hierarchy and process-variation-aware cache are presented to improve the write performance of STT-RAM. The enhancement in write performance results in the degradation of read operations, in terms of both speed and data reliability. This dissertation also presents an architecture to resolve STT-RAM read disturbance issue. Furthermore, the scaling of STT-RAM is hindered due to the required size of switching transistor. To break the cell area limitation of STT-RAM, racetrack memory is studied to achieve an even higher memory density and better performance and lower energy consumption. With dedicated elaboration, racetrack memory based cache design can achieve a siginificant area reduction and energy saving when compared to optimized STT-RAM

    Write Intensity Prediction for Energy-Efficient Non-Volatile Caches

    No full text
    1

    Reuse-Distance-Aware Write-Intensity Prediction of Dataless Entries for Energy-Efficient Hybrid Caches

    No full text
    corecore