164,539 research outputs found
Modelling and simulation on the tool wear in nanometric cutting
Tool wear is a significant factor affecting the machined surface quality. In this paper, a Molecular Dynamics (MD) simulation approach is proposed to model the wear of the diamond tool in nanometric cutting. It includes the effects of the cutting heat on the workpiece property. MD simulation is carried out to simulate the nanometric cutting of a single crystal silicon plate with the diamond tip of an Atomic Force Microscope (AFM). The wear mechanism is investigated by the calculation of the temperature, the stress in the diamond tip, and the analysis of the relationship between the temperature and sublimation energy of the diamond atoms and silicon atoms. Microstrength is used to characterize the wear resistance of the diamond tool. The machining trials on an AFM are performed to validate the results of the MD simulation. The results of MD simulation and AFM experiments all show that the thermo-chemical wear is the basic wear mechanism of the diamond cutting tool
Modelling flan wear of carbide tool insert in metal cutting
In this paper theoretical and experimental studies are carried out to investigate the intrinsic relationship between tool flank wear and
operational conditions in metal cutting processes using carbide cutting inserts.Anewflank wear rate model, which combines cutting mechanics
simulation and an empirical model, is developed to predict tool flank wear land width. A set of tool wear cutting tests using hard metal coated
carbide cutting inserts are performed under different operational conditions. The wear of the cutting inset is evaluated and recorded using
Zygo New View 5000 microscope. The results of the experimental studies indicate that cutting speed has a more dramatic effect on tool life
than feed rate. The wear constants in the proposed wear rate model are determined based on the machining data and simulation results. A
good agreements between the predicted and measured tool flank wear land width show that the developed tool wear model can accurately
predict tool flank wear to some extent
Valve recession: From experiment to predictive model
Increasing demands on engine performance and cost reductions have meant that advances made in materials and production technology are often outpaced This frequently results in wear problems occurring with engine components. Few models exist for predicting wear, and consequently each wear problem has to be investigated, the cause isolated and remedial action taken. The objective of this work was to carry out experimental studies to investigate valve and seat insert wear mechanisms and use the test results to develop a recession prediction tool to assess the potential for valve recession and solve problems that occur more quickly. Experimental apparatus has been developed that is capable of providing a valid simulation of the wear of diesel automotive inlet valves and seats. Test methodologies developed have isolated the effects of impact and sliding. A semi-empirical wear model for predicting valve recession has been developed based on data gathered during the bench testing. A software program, RECESS, was developed to run the model. Model predictions are compared with engine dynamometer tests and bench tests. The model can be used to give a quantitative prediction of the valve recession to be expected with a particular material pair or a qualitative assessment of how parameters need to be altered in order to reduce recession. The valve recession model can be integrated into an industrial environment in order to help reduce costs and timescales involved in solving valve/seat wear problems
Analysing wear in carpets by detecting varying local binary patterns
Currently, carpet companies assess the quality of their products based on their appearance retention capabilities. For this, carpet samples with different degrees of wear after a traffic exposure simulation process are rated with wear labels by human experts. Experts compare changes in appearance in the worn samples to samples with original appearance. This process is subjective and humans can make mistakes up to 10% in rating. In search of an objective assessment, research using texture analysis has been conducted to automate the process. Particularly, Local Binary Pattern (LBP) technique combined with a Symmetric adaptation of the Kullback-Leibler divergence (SKL) are successful for extracting texture features related to the wear labels either from intensity and range images. We present in this paper a novel extension of the LBP techniques that improves the representation of the distinct wear labels. The technique consists in detecting those patters that monotonically change with the wear labels while grouping the others. Computing the SKL from these patters considerably increases the discrimination between the consecutive groups even for carpet types where other LBP variations fail. We present results for carpet types representing 72% of the existing references for the EN1471:1996 European standard
Wear of human teeth: a tribological perspective
The four main types of wear in teeth are attrition (enamel-on-enamel contact), abrasion (wear due to abrasive particles in food or toothpaste), abfraction (cracking in enamel and subsequent material loss), and erosion (chemical decomposition of the tooth). They occur as a result of a number of mechanisms including thegosis (sliding of teeth into their lateral position), bruxism (tooth grinding), mastication (chewing), toothbrushing, tooth flexure, and chemical effects. In this paper the current understanding of wear of enamel and dentine in teeth is reviewed in terms of these mechanisms and the major influencing factors are examined. In vitro tooth wear simulation and in vivo wear measurement and ranking are also discussed
FEA modeling of orthogonal cutting of steel: a review
Orthogonal cutting is probably the most studied machining operation for metals. Its simulation with the Finite Element Analysis (FEA) method is of paramount academic interest. 2D models, and to a lesser extent 3D models, have been developed to predict cutting forces, chip formation, heat generation and temperature fields, residual stress distribution and tool wear. This paper first presents a brief review of scientific literature with focus on FEA modelling of the orthogonal cutting process for steels. Following, emphasis is put on the building blocks of the simulation model, such as the formulation of the mechanical problem, the material constitutive model, the friction models and damage laws
Wear Measuring and Wear Modelling Based on Archard, ASTM, and Neural Network Models
The wear measuring and wear modelling are a fundamental issue in the industrial field, mainly correlated to the economy and safety. Therefore, there is a need to study the wear measurements and wear estimation. Pin-on-disc test is the most common test which is used to study the wear behaviour. In this paper, the pin-on-disc (AEROTECH UNIDEX 11) is used for the investigation of the effects of normal load and hardness of material on the wear under dry and sliding conditions. In the pin-on-disc rig, two specimens were used; one, a pin which is made of steel with a tip, is positioned perpendicular to the disc, where the disc is made of aluminum. The pin wear and disc wear were measured by using the following instruments: The Talysurf instrument, a digital microscope, and the alicona instrument; where the Talysurf profilometer was used to measure the pin/disc wear scar depth, a digital microscope was used to measure the diameter and width of wear scar, and the alicona was used to measure the pin wear and disc wear. After that, the Archard model, American Society for Testing and Materials model (ASTM), and neural network model were used for pin/disc wear modelling. Simulation results are implemented by using the Matlab program. This paper focuses on how the alicona can be considered as a powerful tool for wear measurements and how the neural network is an effective algorithm for wear estimation
A model of fretting wear in the contact of an axisymmetric indenter and a visco-elastic half-space
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in AIP Conference Proceedings 1683, 020040 (2015) and may be found at https://doi.org/10.1063/1.4932730.We propose a simple and efficient model of wear of axially symmetric bodies in contact with a visco-elastic foundation based on the method of dimensionality reduction. The results of simulation of wear of a parabolic indenter have been demonstrated. It has been shown that dissipation due to viscosity of a material leads to increase the size of the worn region of an indenter. The noted effect is conditioned with an increase of effective shear modulus of visco-elastic material under sufficiently high velocities of tangential loading. The model can be generalized to a wide range of materials with complex visco-elastic properties
A Review on Numerical Simulation and Comparison of Carbide and HSS Tool Wear Rate while Drilling with Difficult To Cut Super Alloy Titanium Based on Archard Model
A Carbide and HSS tool wear rate simulation using Archardˊs wear model is proposed, finite element modelling is done using commercial finite element software ABAQUS/explicit. ABAQUS interface was used to simulate the contact pressure. For measuring wear depth of tool's drilling operation is performed experimentally then wear depth is measured on profilprojecter. Comparing the wear rate, based on Archad model
- …
