1,382,983 research outputs found

    Knowledge representation for basic visual categories

    Get PDF
    This paper reports work on a model of machine learning which is based on the psychological theory of prototypical concepts. This theory is that concepts learnt naturally from interaction with the environment (basic categories) are not structured or defined in logical terms but are clustered in accordance with their similarity to a central prototype, representing the "most typical'' member

    Multi-View Task-Driven Recognition in Visual Sensor Networks

    Full text link
    Nowadays, distributed smart cameras are deployed for a wide set of tasks in several application scenarios, ranging from object recognition, image retrieval, and forensic applications. Due to limited bandwidth in distributed systems, efficient coding of local visual features has in fact been an active topic of research. In this paper, we propose a novel approach to obtain a compact representation of high-dimensional visual data using sensor fusion techniques. We convert the problem of visual analysis in resource-limited scenarios to a multi-view representation learning, and we show that the key to finding properly compressed representation is to exploit the position of cameras with respect to each other as a norm-based regularization in the particular signal representation of sparse coding. Learning the representation of each camera is viewed as an individual task and a multi-task learning with joint sparsity for all nodes is employed. The proposed representation learning scheme is referred to as the multi-view task-driven learning for visual sensor network (MT-VSN). We demonstrate that MT-VSN outperforms state-of-the-art in various surveillance recognition tasks.Comment: 5 pages, Accepted in International Conference of Image Processing, 201

    Drawing the Representation

    Get PDF
    This article argues that the Representation is drawn by the perceiver: that it does not arrive at the visual cortex fully-formed. Rather, colour arrives at the visual cortex and the Representation is drawn from that

    Transitive Invariance for Self-supervised Visual Representation Learning

    Full text link
    Learning visual representations with self-supervised learning has become popular in computer vision. The idea is to design auxiliary tasks where labels are free to obtain. Most of these tasks end up providing data to learn specific kinds of invariance useful for recognition. In this paper, we propose to exploit different self-supervised approaches to learn representations invariant to (i) inter-instance variations (two objects in the same class should have similar features) and (ii) intra-instance variations (viewpoint, pose, deformations, illumination, etc). Instead of combining two approaches with multi-task learning, we argue to organize and reason the data with multiple variations. Specifically, we propose to generate a graph with millions of objects mined from hundreds of thousands of videos. The objects are connected by two types of edges which correspond to two types of invariance: "different instances but a similar viewpoint and category" and "different viewpoints of the same instance". By applying simple transitivity on the graph with these edges, we can obtain pairs of images exhibiting richer visual invariance. We use this data to train a Triplet-Siamese network with VGG16 as the base architecture and apply the learned representations to different recognition tasks. For object detection, we achieve 63.2% mAP on PASCAL VOC 2007 using Fast R-CNN (compare to 67.3% with ImageNet pre-training). For the challenging COCO dataset, our method is surprisingly close (23.5%) to the ImageNet-supervised counterpart (24.4%) using the Faster R-CNN framework. We also show that our network can perform significantly better than the ImageNet network in the surface normal estimation task.Comment: ICCV 201
    corecore