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This paper reports work on a model of machine learning which is based
on the psychological theory of prototypical concepts. This theory is
that concepts learnt naturally from interaction with the environment
(basic categories) are not structured or defined in logical terms but
are clustered in accordance with their similarity to a central prototype,
representing the "most typical” member.

In attempting to operationalize this theory in a machine learning
programme it has been necessary to study object descriptions of visual
data. This has led to the development of a knowledge representation
structure based on the natural properties inherent in visual images,
shape and parts. Methods developed to achieve this are discussed.

The organisation of knowledge derived from this approach differs

fundamentally from existing K:R formalisms in leading to a view of

concepts as perceptual structures at the basic level,with relations

between concepts being described via a superordinate level of abstract concepts.
This has implications both for the differential treatment of concrete and
abstract concepts and in suggesting a feature based retrieval mechanism.
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This paper reports a proposed design for a scheme of knowledge
representation which has evolved during work on a machine learning system.
This scheme differs in many respects from current rule-based, semantic net
and frame-based designs. The motivation for this scheme springs from work
in progress to construct a program with a learning capability in the field
of object recognition, and in particular at the fundamental level, that of
natural object categorization. The structure of this paper is that firstly
the background in this work is described, then the description method for
encoding visual shapes, then the knowledge representation scheme to which
we are led by these considerations. Finally, differences from exist ing

schemes and implications for psychological investigations are discussed.

As this work is still in progress, many details of the scheme are at
present undecided but the general outline and operational approach are
clear and will not be significantly affected by whatever form the detailed
mechanisms finally take. It is the intention of this paper to present and

provoke debate upon the underlying principles of this scheme.

BACKGROUND

Stimulus si tuat ions are unique but living creatures do not
treat them uniquely - they respond on the basis of past learning and
categories. These categories are given labels (by humans) which represent
a single mental concept for all individuals in that category, the
assumption being made that the same structural and processing principles
hold in both perceptual and conceptual realms. Consequently parallel
theoretical developments have taken place in psychological research on

perceptual and conceptual categorization.
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In contrast to most work in Al to date, one school of psychologists

believes that most natural concepts are ill-defined, that is, there is no
rule that can determine membership for all members of a category.
Furthermore, not all members of a concept have equal status- Members
judged to be typical of a concept (e.g. apples for the concept ‘fruit) can
be categorized faster and more accurately than members judged less typical
(e.g. tomato). This line of thought led Rosch et al [1] to develop
‘prototype’ theories of concepts in which membership of a category is
determined by the typicality of a particular object to an ideal member of
the concept which has the average attributes of all class members. This is
not the whole story, however, as any object may be categorized at each of
several different levels, higher levels being abstract and lower levels
more detailed and specific, e.g. a chair may be classified as an inorganic
object, a piece of furniture, a chair or a kitchen chair. These
psychologists have argued that the most cognitively efficient and therefore
most basic level of categorization is that level at which the categories
produced provide the most distinct clusters of objects, i.e. the level
which maximizes the similarity of objects within a category and maximises
the differences between objects in different categories. Thus of the
classifications suggested for a chair, the basic level category is 'chair’
because chairs are quite similar amongst themselves and dist inct from
tables, tomatoes, etc, whereas items of furniture are not very similar
amongst themselves and kitchen chairs do not differ sharply from other
chairs.  Tversky and Hemingway [2] provide evidence that this basic level
of categorization has the following properties:

1) it is the most abstract level at which instances have similar

shapes.

2) it is the most abstract level at which instances have similar

parts.
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3) it is the most abstract level at which a mental image can reflect
the appearance of the entire category.
4) objects are recognized more quickly as members of basic level
categories than as members of categories at other levels.

5) it is the level at which humans spontaneously name an object.

The overall intention of the work of which this paper forms a part is to
construct a model of the categorization process which can learn basic level
'natural’ categories from simple visual data without ins truction. The
approach adopted is to produce a model that operationalizes the above

psychological findings.

VISUAL INPUT - SHAPE DESCRIPTION

The domain for learning in this work was chosen to be that of 2-D
silhouettes of 3-D objects, such that the difference between convex and
concave parts of a silhouette represents properties of the 3-D surface and
where the surface looks continuous in 2-D it really is continuous in 3-D.
Marr [3] shown that if these conditions are met the 3-D surface can often
be successfully inferred from the silhouette. In limiting ourselves to this
domain we are ignoring various sources of visual information, e.g. colour,
texture, depth, motion, so we might expect some deficiencies in what is
considered a basic category (e.g. silhouettes of oranges and apples are
very similar although they form different basic level categories).

However, these properties could easily be incorporated within the knowledge
representation scheme to be proposed, and the key properties of basic
categories, those of shape and parts, will remain the same if we are
judicious in our choice of projections. For these reasons it was thought
reasonable to explore learning and representation in the 2-D domain which

is much easier to handle as regards object description and segmentation.
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Shapes and parts seem a good starting point for visual-
categorization, both on the psychological grounds advanced previously and
intuitively. They are therefore taken as the fundamental descriptors of
visual object perceptions. This raises the question of precisely what is
meant by ‘parts'. Marr's research in machine vision has taken the view
that objects are most naturally segmented into convex parts [3] and we have
followed this line of thought but refined it so that parts need only be
‘psuedo-convex' in the sense that further dividing than into more convex
subparts does not significantly increase the measure of convexity. This
approach is reported elsewhere in more detail [4]. The effect is

illustrated by the resulting ‘parts’ of a horse in FIG 1.

The description of the visual image of a horse is achieved in
stages. Firstly, the horse is described holistically by a set of
descriptors including such measures as principal axis, axis extension
ratio, compactness (perimeter/area), size, etc., applied to the whole
image [5]. The precise set of descriptors used is unimportant as long as
it contains a rough description of the shape. Only a rough description is
necessary as more accurate descr iptions are provided by successive stages.
At the second stage the horse is decomposed as in FIG 1 into its primary
subparts. Each subpart is now described by the same set of descriptors,
and the relative position of each subpart is also stored. This process is
now repeated to any desired number of stages, the subparts being
successively divided and described in increasing detail. The result is a

hierarchial description as in FIG 2.

The level of detail in which a given object is analysed would be
determined sequentially. If it can be recognized at the holistic level
there is no need for any decomposition into parts. Decomposition continues

until the object can be recognized or until the attempt is given up.



KNOWLEDGE REPRESENTATION

Evolutionarily , the earliest forms of nervous systems are reflex
systems giving a ‘hard-wired" response to a recognized stimulus.
Evolutionary development has resulted in the change from a fixed response
to a more flexible knowledge-based response, but it seems reasonable to
asume that knowledge representation structures developed earlier in
connection with recognition provide the basic forms for the later
representat ion of knowledge of other types. We therefore consider the
representation needed for the efficient categorization of visual data and

extend this form of storage to other levels of thought.

Given that the incoming data is primarily encoded in terms of
part/shape hierarchies as outlined in the previous section, recognition
must be achieved by matching this against stored representations of
recognizable categories. The most direct way to achieve this is for the
category representations in memory to be structured in the same way.
However, different horses have slightly different shapes and it Is clearly
inefficient to store a representation of every horse ever seen. A more
efficient approach would be to store a 'typical' or ‘'average' horse
representation, and look for a reasonably close match to this. Such an
‘averaged' description only makes sense if the instances being averaged are
sufficiently perceptually similar and if the descriptions do not descend to
a level of detail where large differences appear. e.g. it is possible to
visualize an ‘average’ banana but not an ‘average’ fruit. Further, the
search tree of stored representations can be more efficiently searched the
earlier it begins branching, i.e. if these averaged representations are
representative of a large a class of instances as possible. Thus for
recognition efficiency we would expect stored hierarchical shape/part
descriptions with ‘typical’ or 'averaged measure values to be formed at

the maximum level of generality consistent with such averages being
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representative of their instances, Being representative of their instances
means that within a category the instances cluster closely around the
average compared to their distances from other categories. Thus the
categories will be as distinct as possible subject to their averages making
perceptual sense. It follows that we expect the structure of this
knowledge representation scheme at the immediate recognition level to

display the properties of Rosen's basic level.

These arguments suggest that there is a basic level of knowledge
representation at which initial recognition is accomplished. It consists
of prototypical representations which are ‘averages' of category members
and structured as in FIG 2. In order to be maximally general, these
prototypes are not very specific, i.e. contain a relatively small degree of
decomposition and thus of detail .Proposed mechanisms by which these
prototyp ical categories might be formed (learnt) are reported elsewhere
[6].

Within the knowledge representation scheme it is also necessary to
accomplish more specific recognition by use of more detailed information
than is required at the initial prototype matching stage. In keeping with
our earlier remarks on recognition level organizations providing the form
for representing other knowledge, and in keeping with Rosch's results
[1], we assume that structure for recognizing more specific categories,
e.g.. kitchen chair, replicates that at basic level. Thus within the class
of objects assigned to a given basic category, e.g. 'horse’, more detailed
prototyp ical images are formed, each representing a smaller class of
instances than 'horse' but again the prototypes being constructed to form
classes of maximum generality and distinctness subject to the ‘averages'
being representative at this more detailed level. 'Horse' at basic level

might be stored simply in terms of possessing a body, neck, head, 4 legs,
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tail and their rough shapes. At a subordinate level 'Racehorse’ might have
different shape descriptors for these parts and be further decomposed, e.g.
leg into upper leg, lower leg and hoof. Since the shape measures of
'racehorse’ are not the same as those of ‘horse' in the parts they both
include in their hierarchies, e.g. body, the subordinate levels are not
simply lower branches on the basic level tree. (If they were, we would
have to identify ‘'racehorse’ only from its details e.g. hoof shape,
ignoring differences in larger parts such as its body shape). Instead the
structure consists of successive levels of prototypes, each prototype being
stored as a hierarchical decomposition into parts and shapes, with the
number of stages of decomposition and the specificity of the measures

becoming greater at each subordinate level of prototype, FIG 3.

With this structure recognition is achieved in stages. Firstly a
categorization is made at the basic level, by matching the object
representation against the stored prototypes. Secondly categorization is
made at the first subordinate level by matching the object representation
against prototypes of categories directly subordinate to the recognized
basic level category. This process may be repeated until a sufficiently

specific categorizat ion has been reached.

In this scheme there is no inheritance of features from a higher
level e.g. horse to a lower level e.g. racehorse. Instead there is a
separate complete prototypical representation on each level.  However, this
does not duplicate storage requirements, since as previously mentioned, the
descriptor measures of 'horse' , applying to a wider set of instances than
'racehorse’, are different. This separate prototypes structure has the
additional advantage that once an object has been categorized as a horse, a

quick check on which subordinate category it fits may be made by checking
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only the initial levels of the subordinate prototypes against the object.
If recognizable differences exist between subordinate prototypes at these
initial levels of decomposition, it is not necessary to check the complete

decoraposit ion of the prototype at this level.

The questions of how matching is evaluated between object and
prototype representations and of how to order searches through the
prototype space are present topics of investigation. Because of their
nature as ‘'averages' only a 'close’ match can be expected between
representations.  Thus a measure of similarity between representations is
required. Such a measure induces both a 'degree of membership’ of an
object in a category and a set of similarity relations between the
prototypes. These latter could be used in a technique such as
multidimensional scaling [7] to induce a low dimensional ordering on the
prototype space which might be used, together with context-driven

constraints on lilcely prototypes, to design an ordered search procedure .

So far we have dealt with knowledge representation from the basic
level down. Above the basic level there are more abstract superordinate
levels. At these levels, a category, e.g. fruit, cannot be represented by
a prototype and therefore has no representation as a decomposition into
parts and shapes. The established pattern of clusters of instances
according to within cluster similarity and between cluster differences must
there fore be based on relationsh ips other than overall perceptual
similarity.In line with this these abstract categories are taken to
consist of sets of concrete prototypes. Thus ‘'fruit' consists of ‘apple’,
‘orange’, ‘'pear’, etc., and the similarity relations might include ‘eaten

by animals’, 'grows on plants', "juicy'. In general the similarity
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relations might be perceptual as in ‘'furry animals', based on actions or
uses as in 'eaten by animals' or based on emotional or cognitive effects as

in ‘beautiful flowers', ‘intended for storage'.

For such similarity relations to be utilized it is necessary to
revise our picture of basic and subordinate level categories to include
with  their  prototypical perceptual descriptions also prototypical
information on their uses, actions, interactions, emotional inplications,

cognitive implications and any other important non-perceptual effects.

Categorizat ion on the basis of non-perceptual features is aided by
the existence of episodic memory, storing time sequence descriptions of
recognized objects, their physical interactions and the observer's feelings
and inferences about them [8]. At these abstract levels of categorization
there is no natural division into distinct categories corresponding to the
natural division into prototypical categories at basic level, and so the
abstract classes formed are essentially arbitrary. They will be formed and
survive as part of the knowledge structure depending on their usefulness,
which is in associating input data with inferences and actions, since
rule-type knowledge is most efficiently stored and used when represented in
terms of the most general categories to which it applies. Thus the
abstract categories formed will depend upon the environment, the decision

processes being used and on feedback received

The complete picture of knowledge representation for categories at

all levels is now given in FIG 4.
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Note chat in a sense the abstract categories do not have any
content. They are merely a collection of pointers to concrete prototypes.
Also, just as at the basic level some instances are closer to the prototype
and thus have a greater degree of membership of the category than others,
some concrete prototypes will have a greater degree of membership in an

abstract category than others.

DISCUSSION

The knowledge representation scheme for categories outlined in this
paper contrasts in many respects with existing schemes [9, 10]. Firstly,
there is no logical definition of categories. All categories in this
scheme consist of clusters of instances or clusters of prototypes. An
instance may have a greater or lesser degree of membership of a category,
but there is no sharp division between members and non-members. This
implies that the use of logical deduction as a reasoning mechanism with
such a scheme must be very limited if used at all. Secondly, the
representat ion structure is not hierarchical. The use of terms like
superordinate and subordinate levels is merely illustrative; there is no
inheritance of properties from more abstract to less abstract levels. Each
category comes complete with its own properties represented in its
prototype or, for abstract categories, its set of prototypes. Thus in
recognition an object is not recognized as firstly animal, then fish and
then goldfish but instead firstly at the basic level, say fish, and then
depending on need, as goldfish or animal. Thirdly, the nature of abstract
categories or col lections of prototypes means that thinking about such
categories will automatically be in terms of concrete ‘examples’ of the
abstract category, the prototypes. This accords with the exemplar view of
categories [11]. Fourthly, there is not necessarily a one to one
correspondence between the categories (concepts) in the representation

scheme and verbal labels for concepts. For example, a penguin and a
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sparrow will not be in the same prototype class at basic level, since they
do not look alike. Thus there are at least two basic level categories
‘penguins’ and ‘ordinary birds', say. However, most people would say that
both a penguin and a sparrow are ‘birds’.  Thus ‘'birds’ is a superordinate
(abstract) category to which the verbal label corresponds, but there
appears to be no verbal label ordinarily used for the ‘ordinary birds'
category.  Since superordinate categories are different in nature from
basic and subordinate ones, psychological experiments treating 'bird" on
the same level as 'penguins' may be treating separate measures of
similarity as identical, e.g. Tversky & Smith [I2] compare similarities
between different sorts of fruits such as cherry, apple, etc.,, with the

similarities between cherry and fruit,apple and fruit, etc.

This knowledge representation scheme has been based on considerations
of the fundamental cognitive processes, categorization and recognition. It
does not attempt to deal with advanced reasoning processes which have

formed the model for most existing schemes.

For some specific reasoning tasks this structure will seem
inefficient, and the prototypical organization in some ways carr ies
redundant information. However, redundancy implies flexibility which is
certainly needed in a general knowledge representation scheme. If, as is
usual in evolutionary biology, cognitive structures developed earlier for
fundamental purposes are found to form the basis of more advanced
processes, it is necessary that any model of human reasoning should be
compatible with an underlying categorization structure. It is hoped that
this paper will serve the purpose of initiating. debate on this underlying

structure and its implications for more advanced reasoning.
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