1,804,231 research outputs found

    Video Tester -- A multiple-metric framework for video quality assessment over IP networks

    Full text link
    This paper presents an extensible and reusable framework which addresses the problem of video quality assessment over IP networks. The proposed tool (referred to as Video-Tester) supports raw uncompressed video encoding and decoding. It also includes different video over IP transmission methods (i.e.: RTP over UDP unicast and multicast, as well as RTP over TCP). In addition, it is furnished with a rich set of offline analysis capabilities. Video-Tester analysis includes QoS and bitstream parameters estimation (i.e.: bandwidth, packet inter-arrival time, jitter and loss rate, as well as GOP size and I-frame loss rate). Our design facilitates the integration of virtually any existing video quality metric thanks to the adopted Python-based modular approach. Video-Tester currently provides PSNR, SSIM, ITU-T G.1070 video quality metric, DIV and PSNR-based MOS estimations. In order to promote its use and extension, Video-Tester is open and publicly available.Comment: 5 pages, 5 figures. For the Google Code project, see http://video-tester.googlecode.com

    Interactive searching and browsing of video archives: using text and using image matching

    Get PDF
    Over the last number of decades much research work has been done in the general area of video and audio analysis. Initially the applications driving this included capturing video in digital form and then being able to store, transmit and render it, which involved a large effort to develop compression and encoding standards. The technology needed to do all this is now easily available and cheap, with applications of digital video processing now commonplace, ranging from CCTV (Closed Circuit TV) for security, to home capture of broadcast TV on home DVRs for personal viewing. One consequence of the development in technology for creating, storing and distributing digital video is that there has been a huge increase in the volume of digital video, and this in turn has created a need for techniques to allow effective management of this video, and by that we mean content management. In the BBC, for example, the archives department receives approximately 500,000 queries per year and has over 350,000 hours of content in its library. Having huge archives of video information is hardly any benefit if we have no effective means of being able to locate video clips which are of relevance to whatever our information needs may be. In this chapter we report our work on developing two specific retrieval and browsing tools for digital video information. Both of these are based on an analysis of the captured video for the purpose of automatically structuring into shots or higher level semantic units like TV news stories. Some also include analysis of the video for the automatic detection of features such as the presence or absence of faces. Both include some elements of searching, where a user specifies a query or information need, and browsing, where a user is allowed to browse through sets of retrieved video shots. We support the presentation of these tools with illustrations of actual video retrieval systems developed and working on hundreds of hours of video content

    Hot topics in video fire analysis

    Get PDF

    Video semantic content analysis framework based on ontology combined MPEG-7

    Get PDF
    The rapid increase in the available amount of video data is creating a growing demand for efficient methods for understanding and managing it at the semantic level. New multimedia standard, MPEG-7, provides the rich functionalities to enable the generation of audiovisual descriptions and is expressed solely in XML Schema which provides little support for expressing semantic knowledge. In this paper, a video semantic content analysis framework based on ontology combined MPEG-7 is presented. Domain ontology is used to define high level semantic concepts and their relations in the context of the examined domain. MPEG-7 metadata terms of audiovisual descriptions and video content analysis algorithms are expressed in this ontology to enrich video semantic analysis. OWL is used for the ontology description. Rules in Description Logic are defined to describe how low-level features and algorithms for video analysis should be applied according to different perception content. Temporal Description Logic is used to describe the semantic events, and a reasoning algorithm is proposed for events detection. The proposed framework is demonstrated in sports video domain and shows promising results

    Content-Based Video Retrieval in Historical Collections of the German Broadcasting Archive

    Full text link
    The German Broadcasting Archive (DRA) maintains the cultural heritage of radio and television broadcasts of the former German Democratic Republic (GDR). The uniqueness and importance of the video material stimulates a large scientific interest in the video content. In this paper, we present an automatic video analysis and retrieval system for searching in historical collections of GDR television recordings. It consists of video analysis algorithms for shot boundary detection, concept classification, person recognition, text recognition and similarity search. The performance of the system is evaluated from a technical and an archival perspective on 2,500 hours of GDR television recordings.Comment: TPDL 2016, Hannover, Germany. Final version is available at Springer via DO
    corecore