1,063,852 research outputs found

    The Pulsar Kick Velocity Distribution

    Get PDF
    We analyse the sample of pulsar proper motions, taking detailed account of the selection effects of the original surveys. We treat censored data using survival statistics. From a comparison of our results with Monte Carlo simulations, we find that the mean birth speed of a pulsar is 250-300 km/s, rather than the 450 km/s foundby Lyne & Lorimer (1994). The resultant distribution is consistent with a maxwellian with dispersion σv=190km/s \sigma_v = 190 km/s. Despite the large birth velocities, we find that the pulsars with long characteristic ages show the asymmetric drift, indicating that they are dynamically old. These pulsars may result from the low velocity tail of the younger population, although modified by their origin in binaries and by evolution in the galactic potential.Comment: Latex, 10 pages, and 11 postscript figures. Accepted by Monthly Notice

    Single-point velocity distribution in turbulence

    Full text link
    We show that the tails of the single-point velocity probability distribution function (PDF) are generally non-Gaussian in developed turbulence. By using instanton formalism for the Navier-Stokes equation, we establish the relation between the PDF tails of the velocity and those of the external forcing. In particular, we show that a Gaussian random force having correlation scale LL and correlation time τ\tau produces velocity PDF tails lnP(v)v4\ln{\cal P}(v)\propto-v^4 at vvrms,L/τv\gg v_{rms}, L/\tau. For a short-correlated forcing when τL/vrms\tau\ll L/v_{rms} there is an intermediate asymptotics lnP(v)v3\ln {\cal P}(v)\propto-v^3 at L/τvvrmsL/\tau\gg v\gg v_{rms}.Comment: 9 pages, revtex, no figure

    Stellar Velocity Distribution in Galactic Disks

    Full text link
    We present numerical studies of the properties of the stellar velocity distribution in galactic disks which have developed a saturated, two-armed spiral structure. In previous papers we used the Boltzmann moment equations (BME) up to second order for our studies of the velocity structure in self-gravitating stellar disks. A key assumption of our BME approach is the zero-heat flux approximation, i.e. the neglection of third order velocity terms. We tested this assumption by performing test particle simulations for stars in a disk galaxy subject to a rotating spiral perturbation. As a result we corroborated qualitatively the complex velocity structure found in the BME approach. It turned out that an equilibrium configuration in velocity space is only slowly established on a typical timescale of 5 Gyrs or more. Since many dynamical processes in galaxies (like the growth of spirals or bars)act on shorter timescales, pure equilibrium models might not be fully appropriate for a detailed comparison with observations like the local Galactic velocity distribution. Third order velocity moments were typically small and uncorrelated over almost all of the disk with the exception of the 4:1 resonance region (UHR). Near the UHR (normalized) fourth and fifth order velocity moments are still of the same order as the second and third order terms. Thus, at the UHR higher order terms are not negligible.Comment: 8 pages, 3 figures, to appear in the Proceedings of "Chaos in Astronomy", Athens, G. Contopoulos & P.A. Patsis (eds.

    Velocity and Distribution of Primordial Neutrinos

    Full text link
    The Cosmic Neutrinos Background (\textbf{CNB}) are Primordial Neutrinos decoupled when the Universe was very young. Its detection is complicated, especially if we take into account neutrino mass and a possible breaking of Lorentz Invariance at high energy, but has a fundamental relevance to study the Big-Bang. In this paper, we will see that a Lorentz Violation does not produce important modification, but the mass does. We will show how the neutrinos current velocity, with respect to comobile system to Universe expansion, is of the order of 1065 [kms][\frac{km}{s}], much less than light velocity. Besides, we will see that the neutrinos distribution is complex due to Planetary motion. This prediction differs totally from the usual massless case, where we would get a correction similar to the Dipolar Moment of the \textbf{CMB}.Comment: 16 pages, latex, 7 figure

    Characterizing a cluster's dynamic state using a single epoch of radial velocities

    Full text link
    Radial velocity measurements can be used to constrain the dynamical state of a stellar cluster. However, for clusters with velocity dispersions smaller than a few km/s the observed radial velocity distribution tends to be dominated by the orbital motions of binaries rather than the stellar motions through the potential well of the cluster. Our goal is to characterize the intrinsic velocity distribution of a cluster from a single epoch of radial velocity data, even for a cluster with a velocity dispersion of a fraction of a km/s, using a maximum likelihood procedure. Assuming a period, mass ratio, and eccentricity distribution for the binaries in the observed cluster this procedure fits a dynamical model describing the velocity distribution for the single stars and center of masses of the binaries, simultaneously with the radial velocities caused by binary orbital motions, using all the information available in the observed velocity distribution. We find that the fits to the intrinsic velocity distribution depend only weakly on the binary properties assumed, so the uncertainty in the fitted parameters tends to be dominated by statistical uncertainties. Based on Monte Carlo simulations we provide an estimate of how these statistical uncertainties vary with the velocity dispersion, binary fraction, and the number of observed stars, which can be used to estimate the sample size needed to reach a specific accuracy. Finally we test the method on the well-studied open cluster NGC 188, showing that it can reproduce a velocity dispersion of only 0.5 km/s using a single epoch of the multi-epoch radial velocity data. If the binary period, mass ratio, and eccentricity distribution of the observed stars are roughly known, this procedure can be used to correct for the effect of binary orbital motions on an observed velocity distribution. [Abridged]Comment: 11 pages, 6 figures, accepted by A&
    corecore