345,803 research outputs found

    Regression depth and support vector machine

    Get PDF
    The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik?s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special cases are the support vector machine (SVM), [epsilon]-support vector regression and kernel logistic regression. In this paper connections between these methods from different disciplines are investigated for the case of pattern recognition. Some results concerning the robustness of the SVM and other kernel based methods are given. --

    On a strategy to develop robust and simple tariffs from motor vehicle insurance data

    Get PDF
    The goals of this paper are twofold: we describe common features in data sets from motor vehicle insurance companies and we investigate a general strategy which exploits the knowledge of such features. The results of the strategy are a basis to develop insurance tariffs. The strategy is applied to a data set from motor vehicle insurance companies. We use a nonparametric approach based on a combination of kernel logistic regression and ¡support vector regression. --Classification,Data Mining,Insurance tariffs,Kernel logistic regression,Machine learning,Regression,Robustness,Simplicity,Support Vector Machine,Support Vector Regression

    On robustness properties of convex risk minimization methods for pattern recognition

    Get PDF
    The paper brings together methods from two disciplines: machine learning theory and robust statistics. Robustness properties of machine learning methods based on convex risk minimization are investigated for the problem of pattern recognition. Assumptions are given for the existence of the influence function of the classifiers and for bounds of the influence function. Kernel logistic regression, support vector machines, least squares and the AdaBoost loss function are treated as special cases. A sensitivity analysis of the support vector machine is given. --AdaBoost loss function,influence function,kernel logistic regression,robustness,sensitivity curve,statistical learning,support vector machine,total variation

    Doubly Optimized Calibrated Support Vector Machine (DOC-SVM): an algorithm for joint optimization of discrimination and calibration.

    Get PDF
    Historically, probabilistic models for decision support have focused on discrimination, e.g., minimizing the ranking error of predicted outcomes. Unfortunately, these models ignore another important aspect, calibration, which indicates the magnitude of correctness of model predictions. Using discrimination and calibration simultaneously can be helpful for many clinical decisions. We investigated tradeoffs between these goals, and developed a unified maximum-margin method to handle them jointly. Our approach called, Doubly Optimized Calibrated Support Vector Machine (DOC-SVM), concurrently optimizes two loss functions: the ridge regression loss and the hinge loss. Experiments using three breast cancer gene-expression datasets (i.e., GSE2034, GSE2990, and Chanrion's datasets) showed that our model generated more calibrated outputs when compared to other state-of-the-art models like Support Vector Machine (p=0.03, p=0.13, and p<0.001) and Logistic Regression (p=0.006, p=0.008, and p<0.001). DOC-SVM also demonstrated better discrimination (i.e., higher AUCs) when compared to Support Vector Machine (p=0.38, p=0.29, and p=0.047) and Logistic Regression (p=0.38, p=0.04, and p<0.0001). DOC-SVM produced a model that was better calibrated without sacrificing discrimination, and hence may be helpful in clinical decision making

    Regression Depth and Support Vector Machine

    Get PDF
    The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik’s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special cases are the support vector machine (SVM), epsilon-support vector regression and kernel logistic regression. In this paper connections between these methods from different disciplines are investigated for the case of pattern recognition. Some results concerning the robustness of the SVM and other kernel based methods are given

    Predicting the dissolution kinetics of silicate glasses using machine learning

    Full text link
    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties
    corecore