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Regression depth and support vector machine
Andreas Christmann

ABSTRACT. The regression depth method (RDM) proposed by Rousseeuw and
Hubert [RH99] plays an important role in the area of robust regression for
a continuous response variable. Christmann and Rousseeuw [CRO1] showed
that RDM is also useful for the case of binary regression. Vapnik’s convex
risk minimization principle [Vap98| has a dominating role in statistical ma-
chine learning theory. Important special cases are the support vector machine
(SVM), e—support vector regression and kernel logistic regression.

In this paper connections between these methods from different disciplines are
investigated for the case of pattern recognition. Some results concerning the
robustness of the SVM and other kernel based methods are given.

1. Introduction

Binary regression and statistical machine learning play a key role in theoretical
and applied statistics. In supervised learning we have a set of variables, say X (the
predictors, the explanatory variables, or the inputs) which might have an influence
on one or on several response variables, say Y (the dependent variables or the
outputs). Then we are mainly interested in the conditional distribution of Y given
X. An example is the prediction of claim sizes and of the probability for a claim
in the context of motor vehicle insurance companies, c¢f. [Chr04]. In contrast
to that, in unsupervised learning the distinction between inputs and outputs can
not be made in advance such that the joint distribution of all variables is of main
interest. The number of variables can sometimes be extremely large in unsupervised
statistical learning problems.

In this paper supervised statistical learning will be considered, where the single
response variable is discrete. The minimum number of misclassifications achievable
with affine hyperplanes on a given set of labeled points is of special importance.
The problem to determine this quantity exactly is NP-hard, see [HSvH95]. Hence,
there is a need to find reasonable and fast approximation procedures. One approach
to approximate the minimum number of misclassifications achievable with affine
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hyperplanes was proposed by Christmann and Rousseeuw [CRO1]. The approach is
based on the regression depth method proposed by Rousseeuw and Hubert [RH99].

However, sometimes it is not sufficient to allow only affine hyperplanes for sep-
arating two response groups. Therefore, we also treat the support vector machine
proposed by Vapnik [Vap98]. The SVM can be used with a linear kernel, but it
can also be used in combination with universal kernels as the Gaussian RBF ker-
nel which allows more complex structures to separate both response groups. The
SVM is one reference method well-known to be effective to fit complex and high
dimensional data sets.

The rest of the paper is organized as follows. Section 2 gives the notions of com-
plete separation, quasicomplete separation and overlap from [A A84] and [SD86].
Section 3 shows that the regression depth approach is useful for binary regression
models to check whether the maximum likelihood estimate for the parameter vec-
tor exists and how many data points are necessary to guarantee the existence. A
connection between regression depth and overlap is shown and some algorithmic
considerations are given. Section 4 briefly describes Vapnik’s convex risk mini-
mization approach with special emphasis on the support vector machine. Section 5
describes the results of numerical comparisons between SVMs with a linear kernel
and RDM. An example is given in Section 6 which shows that a SVM in combina-
tion with the classical Gaussian RBF kernel can show an unstable behaviour with
respect to training errors and test errors in certain multi-class classification prob-
lems. Section 7 contains a brief summary of recent results concerning robustness
properties of certain statistical machine learning methods based on kernels for the
case of pattern recognition. Kernel logistic regression and the SVM are special
cases. Section 8 gives some numerical results about prediction aspects of SVMs.
Section 9 contains a discussion.

2. Separation and overlap

Generalized linear models are among the most popular approaches to model
the occurrence of an event depending on a vector of explanatory variables, say
xi = (Ti1,...,%ip—1) € RP7L. We will assume that there is also an intercept term.
Examples are the identification of risk factors for cancer in medical applications,
estimating the probability of an insurance claim, the purchase of a product by a
customer in direct marketing, or the probability that the price of a stock exceeds
a previously defined value within one month taking into account general economic
data and indices measuring company performances. The responses y; are commonly
assumed to be realizations of independent Bernoulli random variables Y;. Consider
a given set of observations Z,, = {(z;1,...,%ip-1,%i); ¢ = 1,...,n} C RP, where
y; € {0,1} for ¢ = 1,...,n. The goal is to find an affine hyperplane defined via
0 € RP such that a good classification of the responses is possible.

For the given data set Z,,, define n¢omplete as the minimum number of misclas-
sifications that any affine hyperplane must incur. In particular, if ncomplete = 0,
the data set is completely separated so that there exists a vector 6 € RP such that

(Xi7 1)9/ >0 if Yi = 1
(Xi7 1)9/ <0 if y; =0

AA
N
[N
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for i = 1,...,n. A data set which is not completely separated is quasicompletely
separated if there exists a vector § € RP\{0} such that

(2.3) (x;,1)0' >0 if y; =1

(2.4) (x;,1)0' <0 if 3 =0

for all ¢ and if there exists j € {1,...,n} such that (x;,1)¢’ = 0. A data set is said
to have overlap if there is no complete separation and no quasicomplete separation.
The quantity neomplete denotes the smallest number of observations whose removal
yields complete separation. The quantity noverlap denotes the smallest number of
observations whose removal yields complete or quasicomplete separation. For logis-
tic regression with an intercept term, it is well-known that the classical maximum
likelihood estimate of 6 does not exist if ngyeriap = 0, see [AA84] and [SD86].

The opposite holds true when training a single linear threshold function using
the Perceptron [Ros62] algorithm, which is guaranteed to converge only for data
sets with ncomplete = 0, ¢f. [Nov62]. The quantity nNcomplete 1S @ parameter in
bounds on the prediction error if one measures the quality of linear models accord-
ing to the empirical risk minimization principle, see [Vap98]. Unfortunately, the
problem of determining the exact minimum number of misclassifications ncomplete
based on an affine hyperplane for arbitrary dimensions is NP-hard.

THEOREM 2.1. [HSvH95, Theorem 3.1] Let n disjoint points from RP, each
labelled with response 0 or 1, and a bound k > 1 be given. The problem to de-
cide whether there is an affine hyperplane such that neomplete < k is NP-complete.

The problem remains NP-complete if the points are only allowed to have integer
coordinates.

The next section gives the definition of regression depth proposed by [RH99]
and shows a relationship to the notion of overlap in binary regression models.

3. Regression depth

Rousseeuw and Hubert [RH99] introduced the regression depth approach for
linear regression models. In the following we will consider the logistic regression
model, although the method can be used for other binary regression models in
an analogous manner. Data sets analyzed with such models have the form Z, =
{(xi1s- s @ip-1,y:); 0 = 1,...,n} C R? where y; € {0,1} for i = 1,...,n. For
simplicity, we will assume that the design matrix has full column rank. Denote the
cumulative distribution function of the logistic distribution by A(z) = 1/[1 + e~ 7],
zeR.

DEFINITION 3.1. A vector 6 = (01,...,6,) € RP is called a nonfit to Z, iff
there exists an affine hyperplane V' in x—space such that no x; belongs to V', and
such that the residual r;(8) = y;— A((x;,1)0") > 0 for all x; in one of its open
halfspaces, and r;(8) < 0 for all x; in the other open halfspace.

DEFINITION 3.2. The regression depth of a fit = (61, ...,0,) € RP relative
to a data set Z,, C RP is the smallest number of observations that need to be re-
moved to make 6 a nonfit in the sense of Definition 3.1. Equivalently, rdepth(0, Z,,)
is the smallest number of residuals that need to change sign.

From Definition 3.2 it follows for logistic models that the regression depth of
a fit 0 relative to Z, is equal to the regression depth of —6 relative to the data
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set {(zi1,...,Tip—1,1—yi); ¢ =1,...,n}. Hence, the regression depth is invariant
with respect to different codings of the binary response variable.

There exists an interesting connection between regression depth and complete
separation. Define the horizontal hyperplane defined by 6* = (0,...,0,0.5). Then
6* is a nonfit iff neomprete = 0, and more generally neomplete = rdepth(6*, Z,,). This
implies that ncomplete can be computed with an algorithm for the regression depth
of a given hyperplane, ¢f. Christmann and Rousseeuw [CRO1]. For p € {2,3,4}
the latter can be computed by the O(n?~!log(n)) time algorithms of Rousseeuw
and Hubert [RH99] and Rousseeuw and Struyf [RS98]. For p > 3, [RS98] con-
structed a fast approximation algorithm based on appropriate projections for the
regression depth. The main idea of the algorithm for p > 3 is to approximate
the p—dimensional regression depth by the minimum of certain two-dimensional
regression depths. We use

(3]-) Ncomplete = rdepth(eoptv Zn)

(3.2) = pin rdepth(0, Z,,(9))

(3.3) = OGIJIS}iCan rdepth(6, Z,(0)) =: ncomplete(B) ,
where

(3.4) Zn(0) = {((z;,1)0,y);i=1,...,n} CR? 6 € RP,

and 6,y is an optimal parameter vector.

The set B is determined via projections defined by a large number, say 10%,
of random subsamples of the original data set. In a similar manner one can
also approximate Noverlap DY Toverlap(B). Details of the algorithms are described
in Christmann and Rousseeuw [CRO1]. Software to compute noyerlap(B) and
Ncomplete (B) written in R (packages noverlap and ncomplete from the website
http://cran.r-project.org/) and in FORTRAN is available.

Of course, this approximation algorithm to compute Ncomplete(B) is computer
intensive, if the dimensions n or p or the number of samples to be drawn, i.e. |B],
are high. Further, drawing random subsamples of the original data set often result
in affine hyperplanes for which the number of misclassifications is much higher than
for the desired affine hyperplane.

Other determinations of the set B in (3.3) were investigated by [CFJ02]. A
naive alternative to Ncomplete (B) is to use only one special vector b in (3.3). Define

b= éML ifé]uL exists
~16®  otherwise,

where %) is the last vector computed by the usual Fisher-scoring algorithm to
compute the ML estimate in the logistic regression model after stopping due to de-
tection that there is no overlap in the data set. We compute b by the SAS procedure
PROC LOGISTIC. This SAS procedure gives a warning if the data set has complete
separation or quasicomplete separation, but stores 6®) and the linear combinations
of (2;,1) and 6*). In the same manner, let s(b) be the asymptotic standard er-
ror of the ML estimate, if it exists, or the corresponding quantity evaluated for
o). Of course, other programs to compute ML estimates in the logistic regression
model can also be used. The naive method ncomplete(b) often gives surprisingly
good approximations of ncomplete. Nevertheless, it seems reasonable to find better
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approximations of Ncomplete in an iterative manner as follows. The heuristic method
Necomplete(7) first tries to find a good approximation of ncomplete Using the vector
b as a starting vector. Secondly, a grid search is done where sequentially some
of the components of b are set to zero. Then a local search again starting from
b is performed in the following way. We vary the parameter b componentwise in
discrete steps by a factor in the interval 0 to 3 taking into account the variability
measured by the quantities s(b). If an improvement occurs an additional refine-
ment is made starting from the best solution got so far. Finally the outcomes of all
three methods (starting value, grid search, local search) are compared and the best
solution is chosen. Of course, if during the whole procedure the best possible value
of Ncomplete = 0 is detected, the algorithms stops and outputs the current solution.

Rousseeuw and Christmann [RCO03] proposed the hidden logistic regression
model. This model is strongly related to the logistic regression model. The advan-
tage of the hidden logistic regression model is that robust estimation in that model
is possible and that it circumvents the problem of non-existence of the estimates.

In the following section a relationship between the regression depth approach
and the support vector machine is shown.

4. Convex risk minimization and SVM

In modern statistical machine learning theory the convex risk minimization
principle plays an important role. Vapnik [Vap98] proposed the support vector
machine, which is a special case and can be described as follows for the case of
pattern recognition. The responses are recoded as —1/ + 1 instead of 0/1. The
empirical regularized risk is defined by

n
(4.1) o = argin > Bl ) + M1

i=
where A > 0 is a penalizing constant, Y = {—-1,+1}, L : Y x R — R, is a convex
loss function, H is a reproducing kernel Hilbert space with kernel k, and f € H
is the function we like to estimate. The term A| f||3, decreases the generalization
error and avoids over-fitting. The convexity of L yields algorithmic advantages and
avoids computationally NP-hard problems. Popular loss functions depend on y and
fviav=uyf(z) or v=y(f(z)+b), where b € R is an additional intercept term.
The SVM uses the loss function L(y, f(z) 4+ b) = max(1 — y[f(z) + ], 0) such that
points are linearly penalized if v := y[f(z) + b] < 1. Other methods based on the
convex risk minimization principle are kernel logistic regression, L2-SVM, modified
L2-SVM, modied Huber, and AdaBoost, see [Zha04].

The optimization problem (4.1) can be interpreted as a stochastic approxima-
tion of the minimization of the theoretical regularized risk given in (4.2):

(4.2) fo = argmin Bp L(Y, £(X)) + AlfII5

We denote by (fn7A7Bn’)\) and (fp,x,bp ) the corresponding quantities if we are
modelling f + b instead of f, where b € R denotes in intercept term.

Decompose 6 in the slope part, say w = (61, ...,6,_1), and the intercept part
0,. To describe the connections between the support vector machine and the re-
gression depth method, let us consider a two-dimensional data set, c¢f. Figure 1.
If the data point marked as = is equal to —1, then the solid line gives a complete
separation of the response groups. The region specified by the dotted border lines
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FI1GURE 1. Illustration of the support vector machine.

is called the margin. It is implicitly defined via the data points on its boundary.
These data points are called support vectors. The margin is defined as the max-
imum distance between parallel affine hyperplanes which separate both response
groups.

However, if the data point marked as * is equal to +1, no complete separation
is possible by an affine hyperplane. The marked data point lies within the convex
hull of the opposite class with a distance proportional to §; minus the margin size.

The aim of the support vector machine is to maximize the width between
all possible parallel affine hyperplanes which separate both response groups while
penalizing misclassifications by a large positive extra cost C. Define C' = (2An)~!.
Accordingly, the support vector machine solves the following quadratic optimization
problem (with intercept term b):

(P) minimize (w.r.t. w,b,§): FlwlP+CY, &
subject to sign(y;) - (2, 1)0' > 1—¢&; and & >0

Apart from some degenerate cases, the solution of the optimization is unique due
to the fact that the SVM uses a convex loss function. Here, C' > 0 is a penalty
parameter specified by the data analyst to model an extra cost for errors. The
quantity & must exceed unity for a misclassification to occur. Hence, the sum over
the slack parameters ), & is an upper bound on the number of training errors, cf.
[Bur98]. Increasing C' corresponds to a higher penalty to errors. In practice, one
usually solves the following dual program

(D) minimize (w.r.t. a): 1d'Qa— a1

subject to ody=0and0<a<(C1 |,
where (Q);; = y;yj zjx;. Using the Karush-Kuhn-Tucker conditions of the dual
program (D), the quantities w, b, and £ can be computed in the following way. The
slope part of 0 is given by

(43) W = Z QG Y; Ty .
i=1

If 0 < a; < C then b = y; — 7' w. While this value of b corresponds to the solution
of the primal problem (P), b is commonly selected to directly minimize the number
of training errors for the given w [Bur98]. This can easily be done after sorting
all training points according to their projection on w.
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Of particular interest is the fact that the dual problem (D) depends only on in-
ner products between vectors of explanatory variables. Substituting Mercer kernels
for the simple dot product allows SVMs to efficiently estimate not only linear, but
also e.g. polynomial functions [BGV92]. Of special importance is the Gaussian
radial basis function (RBF) kernel

k(z,a') = exp(—yllz — 2'|*), 7 >0,

which is a universal kernel on every compact subset of R” in the sense of [SteO1].

If the number of observations n or the dimension p is large, solving the mini-
mization problems (P) or (D) is computer-intensive. While some algorithms (e.g.
PROC NLP or the IML function NLPQUA in SAS, Version 8) require storing the
huge matrix Q € R™*" or the whole matrix specifying the constraints, SVM'9"*
[Joa99] is useful for solving the SVM optimization problem (D). SVM'“" is de-
signed to efficiently handle problems with large p (e.g. 30,000) and large n (e.g.
100, 000). To avoid computing and storing the full Hessian @ of (D), the algorithm
of SVM'9"* proceeds by decomposing the problem [OFG97]. Only a few variables
(¢ =~ 10) are optimized at a time. Their selection is based on a steepest feasible
descent strategy. To reduce zig-zagging behavior, the original selection criterion
[Joa99] can be modified. The working set is updated like a queue, with only two
new variables entering in each iteration. Using this decomposition, the algorithm
solves only small quadratic programs in each step. This leads to small memory
requirements. In particular, memory does not scale O(n * n) like for algorithms
requiring the full Hessian, but typically only by O(n x s), where s is the number
of support vectors. The number of support vectors is generally much lower than
n. The PR-LOQO optimizer developed by Smola [Smo98] can be used to increase
the numerical stability of SVM""  In general, it is helpful to standardize all
explanatory variables in advance.

5. Comparison of SVM and RDM

A fair numerical comparison between the regression depth method and the
support vector machine for the case of pattern recognition by affine hyperplanes
is not easy. One reason is that the results can depend on the algorithms, on the
actual implementations of the algorithms for numerical reasons, and of course on
the considered data sets. Further, both approaches offer different options such as
the number of subsamples for RDM and the penalyzing constant C' for SVM.

There are many software products for the support vector machine and related
methods. A good overview is given on the website www.kernel-machines.org.
Joachims [Joa99] showed that the computation time for the SVM depends heavily
on the algorithm and its implementation. His software SVM!9" is fast even for
high dimensional data sets and was successfully applied for text mining. Scholkopf
and Smola [SS02, p. 219] demonstrated that different SVM classifiers can yield
very different values for the test errors, ranging from 2.6% to 8.9% for the same
data set. Hastie, Tibshirani and Friedman [HTFO1, p. 384f] compared the SVM
using polynomial kernels with degrees d ranging from 1 to 10 with BRUTO and
MARS for a simulated data set with 100 observations. It was shown that the test
error of the SVM classifiers can depend not only on the kernel but also on the
dimensionality of the problem.
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Christmann, Fischer and Joachims [CFJ02] compared RDM, SVM, and linear
discriminant analysis (LDA) for various benchmark data sets from robust logistic
regression. SVM'"9"* was used to compute the SVM. The main criterion was a low
misclassification error w.r.t. to affine hyperplanes. The computation time was the
secondary criterion. Summarizing, RDM gave better results for small to moderate
sized data sets, say for data sets of dimension p < 10 and up to 1,000 observations.
LDA showed the worst performance of the three methods. The misclassification
error based on LDA was even larger than the trivial upper bound for ncomplete
given by the minimum of the sum of the successes (y; = 1) and the sum of the
failures (y; = 0). Especially the heuristic algorithm ncomplete () gave good results.
It was somewhat surprising that the naive algorithm ncomplete(b) can outperform
the algorithm ncomplete(B) in certain situations. For more complex data sets, the
SVM usually performed well to approximate ncomplete and was fast. The results
for SVM depended on the penalyzing constant C. In general C' = 10°/(p — 1) gave
better approximations than C' = 10%/(p — 1), but the computation time increased.
However, SVM sometimes failed to detect that a data set had complete separation,
whereas Ngomplete() Was able to detect such situations. This was true also for
Necomplete (7), Which is however more computer-intensive than ngompiete(b). There
do not yet exist algorithms to use RDM for very high dimensional data sets.

6. SVM and QDA

In this section we show that the SVM can be unstable with respect to training
errors and test errors in certain multi-class classification problems. For simplicity,
let us consider a two-dimensional problem with up to four classes without noise,
although this phenomenon can also occur for more complex data sets. The explana-
tory variables z; and x5 are simulated independently from a uniform distribution on
the interval [—1,41]. The four possible response classes are constructed as follows,
see Figure 2:

yi =0 (complement)
if 2 +23<0.15 then y; =1 (ball)
if 015<2?+23<0.6 then y; =2 (ring)

if 0.25+x; —2z92 <—0.5 then y; =3 (triangle) .
We consider three situations: {ball, ring, complement}, {ball, triangle, comple-
ment}, and {ball, ring, triangle, complement}. For each situation 250 data sets
each with n = 1,000 observations were generated. FEach data set was splitted by
random into a training data set with 700 observations and a test data set with 300
observations. An SVM with Gaussian RBF kernel and C = 10* and a quadratic
discriminant analysis (QDA) were done for each training data set. The R library
e1071 [LDH'03] was used to train the SVM. Then the corresponding training
errors and test errors were computed, see Table 1. The SVM yields much better
results than the QDA w.r.t. training errors and test errors for both classification
problems with 3 response classes. Sometimes even the test errors based on SVM
were zero, i.e. no misclassification happens, which did not happen for the QDA.
However, for the classification problem with 4 response classes the SVM performed
often worse than QDA and the predictions errors had a large variability, see Figure
3. The same figure shows that the SVM gave much smaller prediction errors than
the QDA for some of the 250 data sets. The predicted responses based on the
SVM for the test data sets often consisted of less than four groups, although both
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TABLE 1. Averaged training and test errors for SVM and QDA.*

Classes Training error Test error

SVM QDA SVM QDA
(0,1,2) 0.001 (0.001) 0.267 (0.030) 0.012 (0.007) 0.277 (0.047)
(0,1,3) 0.001 (0.001) 0.275 (0.021) 0.011 (0.007) 0.278 (0.031)
(0,1,2,3) 0.337 (0.225) 0.196 (0.020) 0.360 (0.231) 0.209 (0.034)

* Standard deviations are given in parenthesis.

the training data sets and the test data sets contained observations from all four
response groups.

7. Robustness of the SVM

J.W. Tukey, one of the pioneers of robust statistics, already mentioned in 1960
[HRRS86, p. 21]:

A tacit hope in ignoring deviations from ideal models was that they
would not matter; that statistical procedures which were optimal
under the strict model would still be approzimately optimal under
the approzimate model. Unfortunately, it turned out that this hope
was often drastically wrong; even mild deviations often have much
larger effects than were anticipated by most statisticians.

Different criteria have been proposed to define the notion of robustness in a math-
ematical way, e.g. Huber’s minimax approach [Hub64], Tukey’s sensitivity curve
[Tuk77], Hampels’s approach based on influence functions [Ham74, HRRS86],
the maxbias curve [Hub64, HRRS86], the finite sample breakdown point [DH83],
and the approach based on least favourable local alternatives [Rie94].

In contrast to robust statistics for parametric models such as linear regression
or multivariate location and scatter problems the robustness of non-parametric
and nonlinear methods as the SVM with Gaussian RBF kernels have not yet been
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FIGURE 3. Training errors (below) and test errors (above) for SVM
(left) and QDA (right) for the case of four response classes.

studied in great detail. One of the difficulties is that the quantity of interest is no
longer a parameter vector, say 6 € RP, but a function f € H or a pair (f,b) € HXR,
where H denotes the reproducing kernel Hilbert space.

For the case of pattern recognition Christmann and Steinwart [CS04] showed
that some of the general robustness approaches can be successfully applied to a
broad class of methods based on Vapnik’s convex risk minimization principle. The
following theorem gives the influence function of such methods. The Dirac distri-
bution in the point z is denoted by A,.

THEOREM 7.1. [CS04] Let L : Y x R — [0,00) be a convex and twice contin-
wously differentiable loss function, where Y = {—1,+1}. Furthermore, let X C R™
be a closed or open subset, H be a RKHS of a bounded continuous kernel on X,
and P be a distribution on X x Y. We define G: R x H — H by

G(€7 f) = 2>‘f + E(l—s)P—i—sAz LI(Y7 f(X))(I)(X)

which implies

oG

E(Ov fex) = —Ep[L'(Y, fe x(X)®(X)] + L' (2y, fr.a(22)) P (22)-
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Define S : H — H by

0G .
§:= 570, fon) = 2Xidp + EpL(Y, fp 0 (X)) (2(X), ) (X))
Then the influence function of the classifiers based on (4.2) exists for all z =
(22,2y) € X XY and is given by
oG
(7.1) IF(zT,P)=—=S""1o g(oafp,x) :

REMARK 7.2. The influence function derived in Theorem 7.1 depends on the
point z = (zg, zy) only by the term L'(zy, fp x(22))®(2z). Note the similarity of
this term to the weighting scheme used by influence function of Mallows type M-
estimators. In our case the weighting of z, is of course performed in the feature
space. This term can be bounded by choosing a loss function with a bounded
derivative L’ and a bounded and continuous kernel k. An example is kernel logistic
regression with the Gaussian RBF kernel.

Summarizing the results given in [CS04] for pattern recognition, it turned
out that the influence functions of fp x and (fp x,bp,a) exist, and if bounded and
continuous kernels are used in combination with appropriate loss functions, the
influence function, the maxbias, and the sensitivity curve can be uniformly bounded.

Note that Theorem 7.1 is a result concerning the robustness of fp ) but not
for the prediction of Y, i.e. sign(fpa(x)). In the next section some preliminary
numerical results are given for such predictions.

8. Prediction aspects of SVM

The goal of this section is to study the effect which a single data point can have
on the prediction areas for the response y computed by the SVM.

We generated a data set with n = 500 data points x; from a bivariate Student’s
ts distribution with location parameter p = (0,0) and scatter matrix 3. The
diagonal elements of ¥ were set to 1, whereas the off-diagonal elements were set
to 0.25. The responses y; were generated from a logistic regression model with
intercept for the parameter vector # = (—1,1) and b = 1, such that P(Y; = +1) =
[1+exp(—[b+2}0])] 7! and P(Y; = —1) =1 — P(Y; = +1).

The upper part of Figure 4 shows that the choice of the penalizing constant C
can be quite important for making predictions based on a support vector machine
with a Gaussian RBF kernel. This holds true especially if predictions are made for
a response with an z—value outside the bulk of the x—values of the training data
set. Such observations are often called leverage points. In this sense, the SVM can
produce unstable predictions and should be used with some care. In the lower part
of Figure 4, corresponding prediction areas are given if two of the data points are
moderate outliers. The SVM with a universal Gaussian RBF kernel accommodates
outliers due to the consistency property. The corresponding SVM based prediction
areas for a linear kernel are quite different, see Figure 5.

Similar sensitivity analyses were done for some other situations: increased sam-
ple size, situations where a complete separation of both response groups is possible,
and for a multivariate normal distribution instead of a multivariate Student distri-
bution to generate the x—values. The results are not given here because the results
were qualitatively similar to those described in this section.
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FIGURE 4. SVM based prediction areas using a Gaussian RBF
kernel. Upper: simulated data set. Lower: simulated data set
with two moderate outliers located at x4 = (8, —8) with y4 =1
and zp = (—8,8) with yp = —1. Legend: + for y = 1, o for
y = —1. The prediction area for y = 1 is shaded.

9. Discussion

In this paper pattern recognition problems were considered because they play
an important role in many areas for applied statistics.

Firstly, the case was treated that the response groups should be separated by
affine hyperplanes. Relationships between the regression depth method [RH99],
the support vector machine with linear kernels, and the notions of overlap, complete
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FIGURE 5. SVM based prediction areas using a linear kernel. Up-
per: simulated data set. Lower: simulated data set with two
moderate outliers located at x4 = (8,—8) with y4 = 1 and
xp = (—8,8) with yp = —1. Legend: + for y =1, o for y = —1.
The prediction area for § = 1 is shaded.

and quasicomplete separation [A A84, SD86] in the context of logistic regression
were investigated.

We also considered the case that the response groups should be separated by
more complex functions f. Therefore, we treated the support vector machine with
the more flexible Gaussian RBF kernel. Robustness issues for the estimation of f
were considered. Some numerical examples were also given for the case of predic-
tion.
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