327,136 research outputs found

    Capacitated facility location: Valid inequalities and facets

    Get PDF
    Location Theory;Optimization;Capacity;econometrics

    Some lower bounds on sparse outer approximations of polytopes

    Full text link
    Motivated by the need to better understand the properties of sparse cutting-planes used in mixed integer programming solvers, the paper [2] studied the idealized problem of how well a polytope is approximated by the use of sparse valid inequalities. As an extension to this work, we study the following less idealized questions in this paper: (1) Are there integer programs, such that sparse inequalities do not approximate the integer hull well even when added to a linear programming relaxation? (2) Are there polytopes, where the quality of approximation by sparse inequalities cannot be significantly improved by adding a budgeted number of arbitrary (possibly dense) valid inequalities? (3) Are there polytopes that are difficult to approximate under every rotation? (4) Are there polytopes that are difficult to approximate in all directions using sparse inequalities? We answer each of the above questions in the positive

    A polyhedral approach for the Equitable Coloring Problem

    Get PDF
    In this work we study the polytope associated with a 0,1-integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence that shows the efficacy of these inequalities used in a cutting-plane algorithm
    corecore