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Abstract. This paper considers the precedence constrained knapsack problem. More specifically, we are
interested in classes of valid inequalities which are facet-defining for the precedence constrained knapsack
polytope. We study the complexity of obtaining these facets using the standard sequential lifting procedure.
Applying this procedure requires solving a combinatorial problem. For valid inequalities arising from minimal
induced covers, we identify a class of lifting coefficients for which this problem can be solved in polynomial
time, by using a supermodular function, and for which the values of the lifting coefficients have a combinatorial
interpretation. For the remaining lifting coefficients it is shown that this optimization problem is strongly NP-
hard. The same lifting procedure can be applied to (1,k)-configurations, although in this case, the same
combinatorial interpretation no longer applies. We also consider K-covers, to which the same procedure
need not apply in general. We show that facets of the polytope can still be generated using a similar lifting
technique. For tree knapsack problems, we observe that all lifting coefficients can be obtained in polynomial
time. Computational experiments indicate that these facets significantly strengthen the LP-relaxation.

1. Introduction

The knapsack problem is a classical problem in combinatorial optimization. In this
problem, there is a setV of items, V = {1,2, ...,n} and a knapsack with capacity
b ∈ Z+. Each itemi ∈ V has a valueci ∈ Z, and a weightwi ∈ Z+. The problem is
to find a maximum value subset of the set of items whose total weight does not exceed
the knapsack capacity. This is modeled in the following integer linear programming
formulation:

max
n∑

i=1
ci xi (1)

s.t.
n∑

i=1
ai xi ≤ b (2)

xi ∈ {0,1} i = 1, ...,n (3)

The knapsack problem has received considerable attention, not only because it has
several important applications in itself, but also because it arises as a substructure in
many combinatorial problems.
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This paper studies the precedence constrained knapsack problem, which generalizes
the knapsack problem by including a partial order on the items. We say that there is
a precedence constraintfrom item i to item j if item j can be included in the knapsack
only if item i is included. Thus,xi = 0⇒ xj = 0. The set of precedence constraints
can be represented by a directed graphD(V, A), where the node setV is the set of items,
and each precedence constraint is represented by a directed arc inA. The precedence
constraints are given by

xi ≥ xj (i , j) ∈ A (4)

The precedence constrained knapsack problem (PCKP) is now formulated by (1)-(4). In
this paper, we are interested in facet-defining inequalities for the precedence constrained
knapsack polytope, and more specifically, the complexity of obtaining these facets using
lifting techniques. The remainder of this section discusses PCKP, the literature on its
polyhedral structure, and the contributions of the present paper.

As is the case for the ordinary knapsack problem, PCKP is an interesting problem
in itself, which also arises naturally as a substructure in several other combinatorial
problems. Consider for instance a tool management problem that arises in automated
manufacturing, where each part requires a specific set of tools in order to be processed.
Hence, a part can only be processed on a machine if the required tools are loaded. In our
model this would correspond to a precedence constraint from tooli to job j if tool i is
required to process jobj . The knapsack constraint stems from the limited capacity of the
tool magazine. Crama [8] and Stecke and Kim [19] discuss several problems containing
both knapsack and precedence constraints in the context of tool management, and
provide pointers to literature on related combinatorial problems, of which we mention
only a few here. Mamer and Shogan [14] and Hwan and Shogan [12] consider capital
constrained repair kit selection problems, which also have both knapsack and precedence
constraints. A similar formulation arises in strip mining where digging in lower layers is
impossible without digging in higher layers (see Johnson and Niemi [13]). Shaw [17] and
Cho and Shaw [7] employ a decomposition technique to tackle network design problems,
for which the precedence constrained knapsack problem arises as a subproblem (see
Cho and Shaw [6] and Shaw and Cho [18]).

Garey and Johnson [10] prove that the decision version of PCKP is NP-complete in
the strong sense, but solvable in pseudopolynomial time if the underlying precedence
graph is a tree (see Johnson and Niemi [13] for a dynamic programming algorithm).
Hence, in order to solve the general PCKP to optimality, a further understanding of the
structure of the precedence constrained knapsack polytope can be expected to accelerate
general integer programming schemes, as it has led to more powerful exact solution
methods for ordinary knapsack problems (see Crowder, Johnson and Padberg [9]). For
polyhedral results on the ordinary knapsack problem we refer to Balas [3], Balas and
Zemel [4] and Zemel [21]. Hartvigsen and Zemel [11] discuss the complexity of the
recognition of (lifted) valid knapsack inequalities.

As is observed by Boyd [5], problems which are defined entirely by precedence
constraints can be solved using standard LP-techniques, since a set of precedence
constraints itself defines a totally unimodular matrix and hence, a polyhedron with
integral vertices. For the PCKP, Boyd [5] analyzes two classes of valid inequalities
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arising from K-covers and (1,k)-configurations. He identifies conditions under which
these inequalities define facets of a lower dimensional polytope, in which case lifting
may lead to a facet of the precedence constrained knapsack polytope itself. Park and
Park [16] consider a special case of K-covers which they refer to as minimal induced
covers. In general, inequalities arising from minimal induced covers will not define
facets of the precedence constrained knapsack polytope. Park and Park [16] consider
a lifting technique to obtain valid inequalities. The reader may observe that all of
the aforementioned classes of valid inequalities are natural extensions of classes of
inequalities for the ordinary knapsack problem.

In this paper, we present various new results on facets of the PCKP-polytope. In
Section 3 we state a class of lifting orders which guarantees that valid inequalities of
the PCKP-polytope can be lifted to obtain facet-defining inequalities for the polytope,
using a standard sequential lifting procedure. For valid inequalities arising from minimal
induced covers and (1,k)-configurations we identify the lower dimensional polytope for
which valid inequalities arising from minimal induced covers and (1,k)-configurations
are facet-defining. We specifically consider valid inequalities arising from minimal
induced covers; the variables for which lifting coefficients have yet to be determined are
partitioned into two classes. For one of these classes, we establish a relation between
the lifting coefficients and the number of components in two related subgraphs ofD.
Based on this characterization, these lifting coefficients can be seen to be computable
in polynomial time. For the second class of lifting coefficients however, we prove that
their computation is strongly NP-hard. A special case of the PCKP which has received
considerable attention is the tree knapsack problem, in which the underlying precedence
graph is a tree. Aghezzaf, Magnanti and Wolsey [2] for instance, study the polyhedral
structure of the problem. Our results allow for more general graph structures and extend
their findings. Moreover, our results easily imply that, for the tree knapsack problem,
all lifting coefficients can be obtained in polynomial time. In Section 4 we consider
valid inequalities arising from K-covers. For these valid inequalities standard sequential
lifting techniques cannot always be applied. We show that by applying a related lifting
procedure facets of the PCKP-polytope can still be obtained. To illustrate the effect of
lifted inequalities and their applicability in integer solution procedures, we report our
computational results in Section 5.

2. Notation

Throughout this paper, the following definitions and notation will turn out to be con-
venient. For(i , j) ∈ A, item i is called apredecessorof item j and item j is called
a successorof item i . For all W ⊆ V, we denote byF(W) = { j ∈ V \ W| ∃i1 ∈
W : (i1, j) ∈ A, ∃i2 ∈ W : ( j, i2) ∈ A} the set of elements inV \ W which
are both a successor of an element inW and a predecessor of an element inW, by
P(W) = { j ∈ V \W| ∃i ∈ W : ( j, i) ∈ A} \ F(W) the set of predecessors of a setW
excluding items inW andF(W), by T(W) = W∪ P(W) ∪ F(W) the set of predecessors
of setW includingW, and byR(W) = V \ T(W) the set of remaining items (variables).
For ease of exposition,P({i }), T({i }) andR({i }) will be denotedP(i), T(i) andR(i), re-
spectively. Furthermore, for allW ⊆ V definea(W) =∑i∈W ai . Note that if(i , j) ∈ A
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and( j, k) ∈ A, then, by transitivity of the precedence relations,(i , k) can be assumed
to be an element ofA. Arcs in A induced by transitivity will be omitted in the figures.
Moreover, arcs(i , j) are depicted downward.

The following two assumptions can be made without loss of generality.

Assumption 1. The directed graphD is acyclic.

If D contains a cycle, nodes (variables) in this cycle must either all be included in, or all
be excluded from the knapsack. Hence, the cycle can be contracted into a single node,
with cumulative value and weight coefficient.

Assumption 2. a(T(i)) ≤ b , for all i = 1, ...,n.

This simply implies that for every itemi there exists a feasible solution in which it
is included in the knapsack. Items violating this assumption can be deleted from the
problem instance.

3. Minimal induced covers and (1,k)-configurations

In the literature on the polyhedral structure of the knapsack problem, minimal cover
inequalities have been investigated (see for instance Balas [3], Balas and Zemel [4]).
In order to generalize these concepts to PCKP, we must take into account that if an
item i is included in the knapsack, so must all the items inT(i). In Subsection 3.1
we therefore consider a straightforward generalization of minimal covers, the so-called
minimal inducedcover (see Park and Park [16]). We show how valid inequalities for the
precedence constrained knapsack polytope can be strengthened using standard sequen-
tial lifting techniques. Different lifting orders are discussed, and we derive sufficient
conditions for classes of valid inequalities under which lifting leads to facet-defining
inequalities for the PCKP-polytope.

Given a minimal induced coverC ⊆ V, we give a combinatorial characterization
of the value of the lifting coefficients for the variables inP(C) in Subsection 3.2.
This leads to the conclusion that these values can be computed in polynomial time.
Subsection 3.3 shows that the computation of lifting coefficients for variables inR(C)
is, in general, strongly NP-hard, but solvable in polynomial time in the special case
where the underlying precedence graph is a tree. Finally, Subsection 3.4 concludes this
section with an illustrative example.

3.1. Generic sequential lifting

Item i ∈ V and j ∈ V are calledincomparableif both (i , j) /∈ A and( j, i) /∈ A. A set
W ⊆ V is called incomparable if the elements inW are pairwise incomparable. Note
that if W is incomparable thenF(W) = ∅.
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Definition 1. C ⊆ V is a minimal induced cover (MIC) if

• C is incomparable
• a(T(C)) > b
• a(T(C)\{i }) ≤ b , for all i ∈ C

In words, a minimal induced cover is a set of incomparable items, which together do
not fit in the knapsack, whereas all but one of them do fit in the knapsack together.
The above definition follows the work of Boyd [5]. An alternative definition would be
to replacea(T(C)\{i }) ≤ b, for all i ∈ C by a(T(C\{i })) ≤ b , for all i ∈ C. In fact,
the latter inequality appears in the definition of minimal induced covers of Park and
Park [16]. However, on close inspection it can be verified that the results of Park and
Park [16] are derived under conditions for which the two definitions coincide. Since our
results are only applicable under the current definition, we follow the original definition
of Boyd [5].

ForC ⊆ V a MIC, the following inequality is valid:∑
i∈C

xi ≤ |C| − 1 (5)

We refer to this inequality as theMIC-inequality.
We defineX to be the set of feasible solutions of the PCKP, andconv(X) to be the

convex hull of the setX. Furthermore, for anyW1,W2 ⊆ V such thatW2∩ T(W1) = ∅,
we define the subsetXW1|W2 = X ∩ {x ∈ {0,1}n | xi = 1, for i ∈ W1, andxi = 0, for
i ∈ W2}. ForW ⊆ V, we denote byxW the characteristic vector ofW, that is,xW

i = 1,
if i ∈ W, andxW

i = 0, otherwise.

Proposition 1. (see Boyd [5]) The dimension ofconv(X) is |V|.
Proof. The vectorsxT(i), i = 1, ..., |V| together with the zero vector give|V|+1 affinely
independent vectors inconv(X) (note that we use Assumption 2 here).

ut
Proposition 2. LetC ⊆ V be a MIC. Then (5) is facet-defining forconv(XP(C)|R(C)).

Proof. By Proposition 1, the dimension ofconv(XP(C)|R(C)) is |C|. We specify|C|
affinely independent vectors inconv(XP(C)|R(C)) satisfying (5) at equality. Letθ j =
xT(C)\{ j }, for all j ∈ C. It can easily be checked that the vectorsθ j , j ∈ C satisfy the
inequality at equality and are affinely independent.

ut
Proposition 2 enables us to lift the variables inP(C) and R(C) into the MIC-

inequality using the following technique (see Nemhauser and Wolsey [15]). LetBn =
{0,1}n. For somej , supposeY ⊆ Bn, Y0 = Y ∩ {x ∈ Bn|xj = 0}, andY1 = Y ∩ {x ∈
Bn|xj = 1}. If the inequality ∑

i 6= j

αi xi ≤ α0 (6)



166 R.L.M.J. van de Leensel et al.

is facet-defining forconv(Y1) andY0 6= ∅, then∑
i 6= j

αi xi + α j (1− xj ) ≤ α0 (7)

is facet-defining forconv(Y) if

α j = α0 − max
x∈Y0

∑
i 6= j

αi xi

 . (8)

Similarly, if (6) defines a facet forconv(Y0) andY1 6= ∅, then∑
i 6= j

αi xi + α j x j ≤ α0 (9)

defines a facet ofconv(Y) if

α j = α0 − max
x∈Y1

∑
i 6= j

αi xi

 . (10)

In order to apply this lifting technique repeatedly to MIC-inequalities, we have to be
careful with the order in which the variables are lifted. Otherwise we might, at some
point, violate the conditionY0 6= ∅ when applying (8) or the conditionY1 6= ∅ when
applying (10).

Definition 2. For W ⊆ V, π is called a PFRS-order (predecessors first, remain-
ing variables second) forW if π is a one-to-one mappingπ : P(W) ∪ R(W) →
{1, ..., |P(W) ∪ R(W)|} satisfying the following conditions:

(i) π(i) < π( j) if i ∈ P(W), j ∈ R(W)
(ii) π(i) < π( j) if i , j ∈ P(W) and j ∈ P(i) (reversed topological ordering on P(W))
(iii) π(i) < π( j) if i , j ∈ R(W) andi ∈ P( j) (topological ordering on R(W))

Note that under Assumption 1 such an order always exists. Given a MICC ⊆ V and
a PFRS-orderπ for C, for all elementsj ∈ P(C) ∪ R(C) we define

pπ( j) = {i ∈ P(C) ∪ R(C) | π(i) < π( j)} (predecessors ofj in orderπ)

sπ( j) = {i ∈ P(C) ∪ R(C) | π(i) > π( j)} (successors ofj in orderπ)

During the lifting process, variables inP(C) ∪ R(C) are lifted sequentially, and hence,
the lifting problem for a variablej ∈ P(C) is defined as follows:

Given a MICC ⊆ V and its associated MIC inequality∑
i∈C

xi +
∑

i∈P(C)∩pπ( j)

αi (1− xi ) ≤ |C| − 1 (11)
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which is valid forconv(X), determine

α j = |C| − 1− max
x∈XP(C)∩sπ ( j)|R(C):

xj=0

∑
i∈C

xi +
∑

i∈P(C)∩pπ( j)

αi (1− xi )

 . (12)

Likewise, for a variablej ∈ R(C) the lifting problem is defined as follows:
Given a MICC ⊆ V and an inequality∑

i∈C

xi +
∑

i∈P(C)

αi (1− xi )+
∑

i∈R(C)∩pπ( j)

αi xi ≤ |C| − 1 (13)

which is valid forX, determine

α j = |C| − 1− max
x∈X∅|R(C)∩sπ ( j):

xj=1

∑
i∈C

xi +
∑

i∈P(C)

αi (1− xi )+
∑

i∈R(C)∩pπ( j)

αi xi

 .
(14)

Theorem 1. Let

• C ⊆ V be a MIC with its corresponding valid inequality (5)
• π be a PFRS-order forC.
• lifting coefficients for variables inP(C) be determined according to (12)
• lifting coefficients for variables inR(C) be determined according to (14)

then the resulting inequality∑
i∈C

xi +
∑

i∈P(C)

αi (1− xi )+
∑

i∈R(C)

αi xi ≤ |C| − 1 (15)

defines a facet of the PCKP-polytopeconv(X).

Proof. We construct|V| affinely independent vectors inconv(X), satisfying the in-
equality at equality. Forj ∈ C, let θ j be defined as in the proof of Proposition 2. For
all j ∈ P(C), let θ j be the vector for which the maximum in (12) is attained. W.l.o.g.
assume thatθ j

i = 1 for all i ∈ P(C) ∩ sπ( j), andθ j
i = 0, for all i ∈ R(C). Likewise,

for all j ∈ R(C), let θ j be the vector for which the maximum in (14) is attained.
W.l.o.g., assume thatθ j

i = 0, for all i ∈ R(C) ∩ sπ( j). Then it is easy to verify that the
vectorsθ j , j ∈ V, satisfy the inequality at equality, and moreover, are affinely indepen-
dent.

ut
In order for the lifting procedure that consists of repeatedly solving (12) and (14)

to be applicable, the maximum that is taken in (12) and (14) has to be well defined.
This is not the case, if the subset over which the maximum is taken is empty. We
conclude that the procedure is only valid if, at each iteration, the subset is nonempty.
In the current framework, of lifting MIC inequalities, this property is ascertained by the
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ordering conditions stated in Definition 2. This result, of course, can be generalized to
wider classes of valid inequalities, which may even be defined on subsets which need
not necessarily be incomparable.

Theorem 2. Let W ⊆ V, and letαT x ≤ α0, whereα j = 0 for j /∈ W, be a facet-
defining inequality forconv(XP(W)|R(W)). Then, lifting the variables inP(W) andR(W)
as specified in (8) and (10) in PFRS-order yields a facet of the PCKP-polytopeconv(X).

Proof. Let W ⊆ V. If W = ∅, then XP(W)|R(W) = X, no lifting has to be done, and
hence the theorem obviously holds. So assumeW 6= ∅. As we are given a facet-defining
inequality,XP(W)|R(W) 6= ∅, which implies that the vectorxP(W) ∈ X (i.e.a(P(W)) ≤ b).
Now it only remains to prove that at every step of the lifting process the subset on which
the maximum in (8) and (10) is defined is nonempty. Under a PFRS-orderπ, when
lifting j ∈ P(W), sincea(P(W) ∩ sπ( j)) ≤ a(P(W)) ≤ b, the vectorxP(W)∩sπ( j) is in
the corresponding subset. When liftingj ∈ R(W), the vectorxT( j) is in the subset at
hand.

ut
The conditions on the PFRS-order in Definition 2 are such that at each step of the

lifting process the variables which are fixed do not violate the precedence constraints,
and the variables which are fixed to one do not violate the knapsack constraint. Instead
of considering a PFRS-order in which all elements inP(W) are lifted before elements
in R(W), we might also allow for more general lifting orders, in which an element in
R(W) can be lifted before all predecessors inP(W) are lifted. The existence of such an
order is again guaranteed by Assumption 1. Next, we derive necessary and sufficient
conditions for which this class of more general orders yields facet-defining inequalities.

Definition 3. For W ⊆ V, π is called a valid order forW if π is a one-to-one mapping
π : P(W) ∪ R(W)→ {1, ..., |P(W) ∪ R(W)|} satisfying the following conditions:

(i) π(i) < π( j) if i , j ∈ P(W) \W and j ∈ P(i)
(reversed topological ordering on P(W))

(ii) π(i) < π( j) if i , j ∈ R(W) \W andi ∈ P( j) (topological ordering on R(W))

Theorem 3. LetW ⊆ V, and letαT x ≤ α0, whereα j = 0 for j /∈ W, be a facet-defining
inequality forconv(XP(W)|R(W)). Letπ be a valid order forW. Let the lifting coefficients
of the variables inP(W) and R(W) be determined as in (8) and (10). Then the resulting
inequality is facet-defining forconv(X) if and only ifa((P(W) ∩ sπj ) ∪ T( j)) ≤ b, for
each j ∈ R(W).

Proof. Let W ⊆ V. If W = ∅, then XP(W)|R(W) = X, no lifting has to be done, and
hence the theorem obviously holds. So assumeW 6= ∅. Using inductive arguments,
when lifting a variablex j we are given a facet-defining inequality for the polytope
conv(XP(W)∩sπj |R(W)∩sπj

). If j ∈ P(W) then by nonemptyness of the above polytope
and the definition of a valid order, the subset on which the maximum as in (8) is
defined is nonempty since the vectorxP(W)∩sπ( j) is in the corresponding polytope. If
j ∈ R(W), then the condition on the weights as mentioned in the theorem guarantees
that the subset on which the maximum is defined as in (10) is nonempty since the vector
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x(P(W)∩sπ( j))∪T( j) is in the corresponding polytope. Conversely, assume the condition is
not satisfied for aj ∈ R(W). When lifting the corresponding variable, the subset on
which the maximum is defined is empty.

ut
It is easy to see that conditions(i) and(ii ) in Definition 3 cannot be removed since

then immediately the subset on which the maximum is defined in the lifting procedure
will become empty. Hence the class of valid orders in Definition 3 is the most general
class of orders which can be considered for the standard lifting procedure as defined by
(8) and (10). Note that the above result paves the way for lifting other classes of valid
inequalities. Here, we mention (1,k)-configurations and state the polytope for which the
corresponding valid inequality is facet-defining.

Definition 4. Let

• C ∪ {t} ⊆ V be incomparable, witht /∈ C
• C ∪ {t} be a cover anda(T(C ∪ {t})\{t}) ≤ b
• Q ∪ {t} be a minimal (induced) cover,∀Q ⊆ C with |Q| = k where2≤ k ≤ |C|

thenC ∪ {t} is called a (1,k)-configuration.

For a (1,k)-configuration the following inequalities are valid:

(r − k+ 1)xt +
∑

i∈Z(r)

xi ≤ r (16)

wherer is such thatk ≤ r ≤ |C| andZ(r) is any subset ofC, with |Z(r)| = r .

Proposition 3. Let C ∪ {t} ⊆ V be a (1,k)-configuration, and letZ(r) be any subset
of C, with |Z(r)| = r . Then, (16) is facet-defining forconv(XP(C∪{t})|R(C∪{t})∪(C\Z(r))).
Proof. By Proposition 1,conv

(
XP(C∪{t})|R(C∪{t})∪(C\Z(r))

)
has dimensionr +1. Hence,

to prove the proposition, we constructr +1 affinely independent vectors in the polytope
satisfying the inequality at equality. We assume without loss of generality that the
elements are numbered such that 1, ..., r denote the elements inZ(r) andr + 1 denotes
elementt.

For i = 1, ..., r − k+ 2, let yi be defined by

yi
j =



1 j ∈ {i , ..., i + k− 2}
0 j ∈ {1, ..., r } \ {i , ..., i + k− 2}
1 j = r + 1

1 j ∈ P(C ∪ {t})
0 j ∈ R(C ∪ {t}) ∪ (C \ Z(r))

For i = r − k+ 3, ..., r , let yi be defined by

yi
j =



1 j ∈ {i , ..., r } ∪ {1, ..., i + k− r − 2}
0 j ∈ {i + k− r − 1, ..., i − 1}
1 j = r + 1

1 j ∈ P(C ∪ {t})
0 j ∈ R(C ∪ {t}) ∪ (C \ Z(r))
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and defineyr+1 as

yr+1 =


0 j = r + 1

1 j ∈ Z(r)

1 j ∈ P(C ∪ {t})
0 j ∈ R(C ∪ {t}) ∪ (C \ Z(r))

Then it can easily be verified that the vectorsyi , i = 1, ..., r + 1 are affinely indepen-
dent.

ut
Applying Theorem 2 or 3 now yields that the elements ofV \ (Z(r) ∪ {t}) can now

be lifted in PFRS-order or valid order so as to obtain a facet ofconv(X).

3.2. Lifting predecessors of a minimal induced cover using a PFRS-order

In general, calculatingα j by (8) or (10) requires solving a difficult maximization
problem. In fact, for PCKP, the optimization problems in (12) and (14) are in turn PCKP
problems. In this Subsection we show that the lifting problem of predecessors under
a PFRS-order has a combinatorial interpretation that leads to an algorithm that solves
the lifting problem in polynomial time. In contrast, in Subsection 3.3, it is shown that
the lifting problem for the remaining variables is strongly NP-hard.

Definition 5. Let C ⊆ V be a MIC. ForW ⊆ P(C) let f(W) be the number of (weak)
components in the subgraph ofG induced byW ∪ C.

Lemma 1. f is supermodular: for allW1 ⊆ W2 ⊆ P(C) and i ∈ P(C)\W2 it holds
that

f(W1 ∪ {i })− f(W1) ≤ f(W2 ∪ {i })− f(W2)

Proof. ChooseW2 ⊆ P(C) andW1 ⊆ W2 arbitrarily. Notice first that, since we only
considerW1 ⊆ P(C) andW2 ⊆ P(C), each component of a subgraph induced byW1∪C
or W2∪C contains at least one elementc ∈ C. Further, sinceW1 ⊆ W2, it must hold that
if c1 ∈ C andc2 ∈ C are in different components of the subgraph induced byW2 ∪ C,
then they also are in different components of the subgraph induced byW1 ∪ C.

Now, consider a component ofW2∪C∪{i }, containing verticesQ, and letK = Q\C.
Since this component contains at least one element ofC, the subgraph induced byQ\{i },
consists of a strictly positive number of sayk components. LetK j , j = 1, . . . , k be
the nodes in the intersection ofW2 and thej -th of these components (the components
may be numbered arbitrarily), and similarly, letCj , j = 1, . . . , k be the nodes in
the intersection ofC and the j -th of these components. The subgraphs induced by
K j ∪ Cj , j = 1, . . . , k form the distinct components ofW2 ∪ C.

We first consider the case wherei ∈ Q. Since for all j = 1, . . . , k, the subgraphs
induced byK j ∪ Cj contain at least one element ofC, and since they are distinct
components of the subgraph induced byW2 ∪ C, there must be distinctcj ∈ Cj , j =
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1, . . . , k such thati ∈ P(cj ), j = 1, . . . , k. Using thatW1 ⊆ W2, we establish that
all cj , j = 1, . . . , k are in distinct components of the subgraph induced byW1 ∪ C.
Let K ′j be the set of elements ofP(C) that are in the component containingcj in
the subgraph induced byW1 ∪ C. Then,K ′j ⊆ K j , sinceW1 ⊆ W2. Further, since
i ∈ P(cj ), j = 1, . . . , k, thesek componentsK ′j are in a single component of the
subgraph induced byW1 ∪ C ∪ {i }. Let K ′ be the intersection of the set of nodes in
this component and the nodes inP(C), and letC′ be the other nodes in the component.
Hence, the componentQ of the subgraph induced by(W2 ∪ C ∪ {i }) containingi ,
which consists ofk distinct componentsK1∪C1, . . . , Kk∪Ck of the subgraph induced
by W2 ∪ C, contains as a subgraph a componentK ′ ∪ C′ of the subgraph induced by
W1 ∪ C ∪ {i } that contains in turn at leastk componentsK ′1 ∪ C′1, . . . , K ′k ∪ K ′k of the
subgraph induced byW1 ∪ C, such thatK ′j ⊆ K j for j = 1, . . . , k. Thus it holds that

f(W2 ∩ Q)− f((W2 ∩ Q) ∪ {i }) ≥ f(W1 ∩ Q)− f(W1 ∩ Q) ∪ {i })
On the other hand, ifi /∈ Q, Q\{i } = Q, and hence the subgraph induced byQ\{i }

consists of one component of the subgraph induced byW2 ∪C, namely the component
induced by the vertices inQ. Now consider the setQ ∩ C, and observe thati is not
a predecessor of any of the elements inQ ∩ C. Consider a componentQ′ in W1 ∪ C
for which it holds thatQ′ ⊆ Q. Sincei is not a predecessor of any vertex inQ, it is
not a predecessor of any element ofQ′, and thus,Q′ is a component ofW1 ∪ C ∪ {i }.
Hence, in this case we have that

0= f(W2 ∩ Q)− f((W2 ∩ Q) ∪ {i }) = f(W1 ∩ Q)− f((W1 ∩ Q) ∪ {i })
Since each component ofW1 ∪ {i } is contained in a component ofW2 ∪ {i }, and since
the components ofW2 ∪ {i } are, by definition, disjoint, this implies that

f(W2)− f(W2 ∪ {i }) ≥ f(W1)− f(W1) ∪ {i })
as required.

ut
Definition 6. Let C ⊆ V be a MIC and letP(C) = {1, ...,m}. Then, fori ∈ P(C), let
γi be defined by

γi = f({1, ..., i − 1})− f({1, ..., i }). (17)

Thus,γi represents the reduction in the number of components by adding nodei and
the arcs constituting the precedence relations in whichi is involved to the subgraph of
G induced byC ∪ {1, . . . , i − 1}. As nodei is in P(C), this automatically implies that
γi ≥ 0.

Proposition 4. Let C ⊆ V be a MIC andW ⊆ P(C) with W = {1, ...,m}. Consider
the subgraph ofG induced byW ∪ C. For each componentK of this subgraph it holds
that ∑

i∈K∩W

γi = |C ∩ K | − 1
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Proof. We use induction on the elements inW. For i = 1, consider any componentK
of the subgraph induced byC ∪ {i }. If componentK does not contain nodei , the result
follows immediately, as both the summation of the coefficientsγi in K and|C∩ K | − 1
equal zero. If componentK does contain nodei , this node is connected with|C ∩ K |
nodes in the componentK . Hence,|C ∩ K | components have been merged into one
component, such that the reduction in the number of componentsγi equals|C∩ K |−1.

Next assume that the result holds for the graph induced byC∪ {1, ..., i − 1}. Let K
be any component of the graph induced byC ∪ {1, ..., i }. If K does not contain nodei ,
the result follows directly from the induction hypothesis. IfK does contain nodei ,
then nodei merges a number of components of the graph induced byC ∪ {1, ..., i − 1}
together, say componentsK1, ..., Kk. Note that this impliesγi = k− 1. Consequently,∑

i∈K∩{1,...,i}
γi = |C ∩ K1| − 1+ ...+ |C ∩ Kk| − 1+ k− 1= |C ∩ K | − 1

ut
In the sequel we will use a special ordering on the elements fromP(C), namely,

a reversed topological ordering, i.e. a one-to-one mappingπ : P(C)→ {1, ..., |P(C)|}
satisfyingπ(i) < π( j) for i , j ∈ P(C) and j ∈ P(i). The following theorem shows that
under a reversed topological orderingγ j is exactly the lifting coefficientα j , as defined
in (12), for j ∈ P(C).

Theorem 4. LetC ⊆ V be a MIC and letπ be a reversed topological ordering onP(C).
If the lifting coefficientsγi are determined according to (17) under the orderπ, then for
each j = π−1(1), ..., π−1(|P(C)|) the inequality

∑
i∈C

xi +
π−1( j)∑

i=π−1(1)

γi (1− xi ) ≤ |C| − 1 (18)

is valid and facet-defining for the polytopeconv(XA|R(C)), whereA = {π−1( j + 1), ...,
π−1(|P(C)|)}.
Proof. To show validity of (18) it suffices to show this forj = π−1(|P(C)|). For
other values ofj validity then follows from the fact that we restrict the set of feasible
solutions by setting the variables in{π−1( j + 1), ..., π−1(|P(C)|)} to 1. Let x be an
arbitrary feasible solution withxi = 0 for all i ∈ R(C). DefineC′ = {i ∈ C|xi = 1}, and
W = {i ∈ P(C)|xi = 0}. Then obviouslyC′ 6= C sinceC is a MIC:|C′| ≤ |C|−1< |C|.
Hence,

∑
i∈C

xi +
π−1(|P(C)|)∑
i=π−1(1)

γi (1− xi ) = |C′| +
∑
i∈W

γi ≤ |C′| +
∑
i∈W

γ ′i

≤ |C′| + |C| − f(W) ≤ |C| − 1

The first inequality follows from the supermodularity off , where theγi are obtained
using the sequence ofP(C) = π−1(1), ..., π−1(|P(C)|) and theγ ′i are obtained using
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the subsequence ofπ−1(1), ..., π−1(|P(C)|) defined byW. Using (17), observe that∑
i∈W γ

′
i equals f(∅) − f(W) = |C| − f(W). Finally, f(W) equals the number of

components in the graph induced byC∪W. If W = ∅, then f(W) = |C|, and the result
follows fromC′ ⊂ C sinceC is a MIC. If W 6= ∅, it follows from solution vectorx that
nodes inC′ are not successors of nodes inW. Hence, in the graph induced byC ∪W
the nodes inC′ are |C′| individual components. As there is at least one component
containing elements inW, it follows that f(W) ≥ |C′| + 1, which completes the proof
of the validity of (18).

To show that (18) is facet-defining, we use induction on the elementsj = π−1(1), ...,
π−1(|P(C)|). It suffices to display a feasible solutionθ j with θ j

j = 0, θ j
i = 1, i ∈

{π−1( j + 1), . . . , π−1(|P(C)|)}, andθ j
i = 0 for i ∈ R(C), satisfying (18) at equality

(see Nemhauser and Wolsey [15] Proposition 1.1., page 261). To construct this vector
consider the graph induced byC ∪ {π−1(1), ..., π−1( j)}. Let K be the component
containing nodej . Define the vectorθ j as follows:

θ
j
i =

{
1 i ∈ T(C)\K
0 otherwise

To show thatθ j satisfies (18) at equality, note that

∑
i∈C

θ
j
i +

π−1( j)∑
i=π−1(1)

γi (1− θ j
i ) = |C\K | +

∑
i∈P(C)∩K

γi

= |C\K | + |C ∩ K | − 1

= |C| − 1

where the second equality follows from Proposition 4.
Hence, for j = π−1(1) the vectorθ j satisfies the requirements. Next assume that

the result holds for alli ∈ {π−1(1), ..., π−1( j − 1)}. Hence, we are givenC + j − 1
affinely independent vectors which all have theiri th component equal to 1 fori ∈
P(C)\{π−1(1), ..., π−1( j − 1)}. By definingθ j as in the above and following the same
reasoning,θ j satisfies (18) at equality and is affinely independent from the foregoing
vectors, asθ j

j = 0.
ut

Theorem 4 shows thatf can be used in a lifting process to obtain facet-defining
inequalities. The coefficientsγi represent the reduction in the number of components by
adding nodei and the arcs constituting the precedence relations in whichi is involved
to the subgraph ofG induced byC ∪ {1, . . . , i − 1}. This reduction number can be
determined using a set union algorithm such as developed by Tarjan [20]. Ifn is the
number of nodes in the graph, andm is the number of arcs, the algorithm runs in
O((n+m)α((n+m),n)), whereα((n+m),n) is a functional inverse of Ackerman’s
function [1].
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3.3. Lifting of non-predecessor variables of a minimal induced cover

Although the maximization problem in (8) is NP-hard in general, for PCKP the resulting
problem in (12) can be solved in polynomial time when lifting predecessors of a MICC.
For variables inR(C), the maximization problem in equality (14) is also essentially
a PCKP, but will turn out to be NP-hard in general. To give a formal proof of this
statement, we introduce the following problem definitions:

Clique (see Garey and Johnson [10])
INSTANCE: GraphG = (U, E), and a positive integerK , with 3≤ K ≤ |U|.
QUESTION: DoesG contain a clique of sizeK or more?

Note that the assumptionK ≥ 3 does not change the complexity of the problem.

PCKP-MIC-R(C)-lifting
INSTANCE:

• InstanceI of PCKP, consisting of a directed acyclic graphDI = (VI , AI ), a knap-
sack capacityBI ∈ Z+, and for alli ∈ VI a valuecI

i ∈ Z and a weightaI
i ∈ Z+.

• A MIC CI ⊆ VI

• A PFRS-orderπ I on VI \CI

• A facet-defining inequality∑
i∈CI

xi +
∑

i∈P(CI )

αi (1− xi ) ≤ |CI | − 1

obtained by applying the lifting procedure as defined in (12) to the variables in
P(CI ) under PFRS-orderπ I .
• αI ∈ Z

QUESTION: Is the lifting coefficient for the first variable inR(CI ) under orderπ I , as
defined in (14), less than or equal toαI ?

Theorem 5. PCKP-MIC-R(C)-lifting is NP-complete in the strong sense.

Proof. It can easily be checked that PCKP-MIC-R(C)-lifting is in NP. Hence it suffices
to show that Clique reduces to PCKP-MIC-R(C)-lifting. To this purpose, the graph
G = (U, E) will be transformed into an instanceDI = (VI , AI ), in which there is
a node for eachu ∈ U and for eache∈ E. The nodes corresponding toU will function
as predecessors of nodes corresponding toE. As shown in Subsection 3.2, a lifting
coefficient of a predecessor is equal to the reduction in the number of components.
Under the assumption that, for allu ∈ U, the degree|δ(u)| ≥ 2, this reduction, and
hence the lifting coefficients, are enforced to be 1. Since we are looking for cliques of
size at least 3, this assumption causes no loss of generality.

Let G = (U, E) be an instance of Clique, letK be any integer satisfying
3≤ K ≤ |U|, and letπ be any order on the nodes inU, i.e.,U = {π−1(1), ..., π−1(n)}.
We define an index setJ, consisting of nodesu ∈ U which are currently not adjacent to
a node with higher index. Hence,

J = {u ∈ U| 6 ∃w ∈ U : π(w) > π(u), {u, w} ∈ E}



Lifting valid inequalities for the precedence constrained knapsack problem 175

Extend the graphG to G̃ = (Ũ, Ẽ), where

Ũ = U ∪
⋃
u∈J

{ũ} ; Ẽ = E ∪
⋃
u∈J

{u, ũ}

Furthermore, let̃K = K , andπ̃ an order onŨ such thatπ(u) = π̃(u), for u ∈ U.
Then, since nodes iñU have degree 1,G contains a clique of sizeK ≥ 3 if and only if
G̃ contains a clique of sizẽK .

Next, we determine a subsetL ⊆ E whose elements share a common predecessor
in the directed graph to be introduced shortly. Letδ(u) be the set of edges incident to
nodeu in graphG̃. Then, the setL is determined by the following algorithm, which is
to be explained shortly:

L = ∅; W = Ẽ; /* initialisation */

for u = π̃−1(1) to π̃−1(|U|) do

begin

let e∈ W ∩ δ(u);
L = L ∪ (W∩ δ(u)\{e});
W = W\δ(u);

end;

endfor;

This algorithm processes the verticesu ∈ Ũ in increasing order of their indices, and
considers the intersection ofδ(u) andW, whereW initially consist of all edges iñE.
In each iteration, the algorithm selects an arbitrary edgee in the intersection ofδ(u)
andW, and eliminates all edges inδ(u) from W. Except fore, the thus eliminated edges
are added to a setL which is initially empty. Notice that such ane always exists since
each vertexu ∈ U is adjacent to a higher index vertex inŨ. Notice also that all edges in
W∩ δ(u) \ {e} are inE since vertices inU only contain edges tõU, and hence iñE \ E,
if they are not adjacent to a higher index vertex inU, and should this be the case, then
they contain only one such edge (which per force is chosen to bee).

Now, we are able to define the instanceI with directed graphDI = (VI , AI ) where

VI = Ũ ∪ Ẽ ∪ {Q,q} ; AI = {(u,e)|u ∈ Ũ,e∈ Ẽ,e∈ δ(u)} ∪ (Q,q) ∪
⋃
e∈L

(Q,e)

To complete the instanceI of PCKP-MIC-R(C)-lifting, letcv ∈ Z for all v ∈ VI , and
a(Q) ∈ Z+. Further, let

BI = |U|
K̃
+ |Ũ \U| ·

1+
(K̃

2

)
K̃3

+ |Ẽ| − 1

K̃3
+ a(Q)
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and define weights for nodes inVI as follows:

aI
u =



1
K̃

u ∈ U

1+ (
K̃
2)

K̃3 u ∈ Ũ\U
1

K̃3 u ∈ Ẽ

a(Q) u = Q

BI −
[

1+ (K̃
2)

K̃3 + a(Q)

]
u = q

Now considerẼ. In order to include alle∈ Ẽ in the knapsack, we must also include all
items inP(Ẽ), which means in this case that allu ∈ Ũ andQ must be in the knapsack.
Since the nodes inu ∈ Ũ andQ already account for a weight of

|U|
K̃
+ |Ũ\U| ·

1+
(K̃

2

)
K̃3

+ a(Q)

only |Ẽ| − 1 elements fromẼ can be included in the knapsack. This yields thatẼ is
a MIC. Now, letπ I be a PFRS-order oñU ∪ {Q,q} defined by:

π I (i) =


1 i = Q

π̃(i)+ 1 i ∈ Ũ

|Ũ| + 2 i = q

and the corresponding facet-defining inequality after liftingQ andŨ be given by∑
i∈Ẽ

xi + (|L| − 1) (1− xQ)+
∑
i∈U
(1− xi ) ≤ |Ẽ| − 1 (19)

The lifting coefficients can be explained as follows. Notice that by the construction ofAI ,
Q connects|L| elements ofẼ, and thus addingQ yields a reduction in the number of
components of|L| − 1. Further, by the construction ofDI , there are|U| edges not
connected toQ. Now, using our assumption all verticesu ∈ U have|δ(u)| ≥ 2, each
vertexu ∈ U connects the edgee selected in thẽπ(u) − th iteration of the previously
described algorithm to the component which became connected whenxQ was lifted.
Henceαu = 1 for all u ∈ U. Finally, the vertices̃u ∈ Ũ can be seen not to cause
a reduction in the number of components at all, and hence have coefficientαũ = 0.

Finally, let

αI = |Ẽ| − 1−
[(

K̃

2

)
+ |U| − K̃ .

]

We leave it to the reader to verify that the above transformation fromG, via G̃, to
instanceI is polynomial.
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Next let us consider the problem (14) that arises when liftingxq, the only variable
in R(CI ). When lifting variablexq according to (14), nodesq andQ must be included
in the knapsack.

We are now going to show that̃G contains a clique of sizẽK ≥ 3 if and only if the
maximal value of the lifting coefficient for variablexq is less than or equal toαI .

(⇒) If G contains a clique of sizẽK , then by including the nodesu in Ũ ∪ Ẽ corres-
ponding to the vertices and edges in the clique in the knapsack together withQ andq,

we have a cumulative weight̃K
K̃
+ (K̃

2)
K̃3 + a(Q)+ BI −

[
1+ (K̃

2)
K̃3 + a(Q)

]
= BI . Thus

this set of items is feasible. Furthermore, together these items yield a value forαI of

|Ẽ| − 1−
[(

K̃

2

)
+ |U| − K̃

]
as required.

(⇐) Let the value of the lifting coefficient forxq (beingαq ≤ αI ) be obtained by
a solution in whichi items (say) corresponding to nodesu ∈ U in the graphG̃ are
included in the knapsack. Let us first assumei > K̃ . Then the weight in the knapsack
amounts to at least

1+ 1

K̃
+ a(Q)+ BI −

1+
(K̃

2

)
K̃3
+ a(Q)

 > BI

which yields a contradiction. Hencei ≤ K̃ . Assumei < K̃ . Then,

αq ≥ |Ẽ| − 1−
[(

i

2

)
+ |U| − i

]
> |Ẽ| − 1−

[(
K̃

2

)
+ |U| − K̃

]
= αI

for K̃ ≥ 3. Again a contradiction. Let us finally consider the case wherei = K̃ . Then
by the above reasoning we findαq ≥ αI which together withαq ≤ αI implies that
αq = αI and hence the remaining knapsack capacity

BI − K̃

K̃
− a(Q)− BI +

1+
(K̃

2

)
K̃3
+ a(Q)

 = (K̃
2

)
K̃3

must account for an increase in the solution of the maximization problem in (14) of at

least
(K̃

2

)
. Hence, at least

(K̃
2

)
vertices fromẼ must be included in the knapsack, and

moreover, these vertices must have their predecessors in the graph in the knapsack. This
can only be achieved if these vertices are inE, and hence we have found a clique of
sizeK in the graphG.

ut
Although lifting variables for a PCKP is strongly NP-hard in general, in the special

case where the precedence graph is a tree and the size of the coefficients in the given
valid inequality is polynomially bounded, then lifting coefficients can be obtained in
polynomial time.
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Theorem 6. Given a PCKP for which the precedence graph is a tree, and a valid
inequality with coefficients whose size is bounded by a polynomial in the size of the tree,
then all lifting coefficients can be determined in polynomial time.

Proof. Lifting a variable requires solving a tree knapsack problem on a subtree of the
original tree. Tree knapsack problems with possibly negative objective coefficients can
be solved in pseudo-polynomial timeO(nQ2) by an extension of a standard dynamic
programming algorithm for tree knapsacks (see for instance Jonson and Niemi ([13]),
whereQ is an upper bound on the maximum value that can be achieved in the optimiza-
tion problem. If all coefficients of the inequality are polynomially bounded in the size
of the original tree, thenQ is polynomially bounded, and therefore the tree knapsack
problem can be solved in polynomial time.

ut

3.4. An example

Consider the example in Fig. 1. Table 1 gives an example of both a minimal induced
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ai = 4, i ∈ {1, ..., 7}
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ai = 7, i ∈ {12}

b= 37

Fig. 1. Example

cover for which two different PFRS-orders are stated and a (1,k)-configuration for
which only two valid inequalities out of the total set as defined by (16) are listed. The
resulting facet-defining inequalities are listed below. The combinatorial interpretation
of the predecessors of a minimal induced cover can be seen from this table, which also
illustrates that different PFRS-orders can lead to different facets. The reader may note
that many more covers and (1,k)-configurations are present in the problem instance (see
also Section 5).
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Table 1.A minimal induced cover and (1,k)-configuration for problem instance in Fig. 1

C t type Z(r) lifting order

{1,2,5,6,7} – MIC – 8,9,10,11,3,4,12
{1,2,5,6,7} – MIC – 8,10,9,11,3,4,12
{1,2,5} 12 (1,2)-conf {1,2} 7,8,9,10,11,3,4,6
{1,2,5} 12 (1,2)-conf {1,2,5} 7,8,9,10,11,3,4,6

Resulting facet-defining inequalities for Table 1:

x1 + x2 + x5 + x6 + x7 + (1− x8) + 2 (1− x9) +(1− x11) + x12 ≤ 4
x1 + x2 + x5 + x6 + x7 + (1− x8) + 2 (1− x10) +(1− x11) + x12 ≤ 4
x1 + x2 + (1− x8) +(1− x11) + x12 ≤ 2
x1 + x2 + x5 + (1− x8) + (1− x9) +(1− x11) +2 x12 ≤ 3

4. K-covers

In this section, we discuss valid inequalities arising from K-covers. Although this class
of inequalities is a direct generalization of minimal induced covers, it is not always
immediately clear for which subset of the polytope the corresponding valid-inequalities
are facet-defining. One way to obtain facets for the PCKP-polytope would be to follow
two steps: first, the exact polytope for which the valid inequality is facet-defining could
be determined and next, the same lifting procedure as mentioned in Section 3 could be
applied. In this section, we show that if the first step is skipped, and a different lifting
procedure is applied, again facets for the PCKP-polytope are obtained.

Definition 7. C ⊆ V is a K-cover if

• C is incomparable
• ∀S⊆ C, with |S| = K it holds thata(T(S)) > b, buta(T(S)\{i }) ≤ b,∀i ∈ S.

Let C ⊆ V be a K-cover, then ∑
i∈C

xi ≤ K − 1 (20)

is a valid inequality for the PCKP-polytope.
Figure 2 shows that ifC ⊆ V is a K-cover the subsetXP(C)|R(C) can be empty,

in which case the aforementioned lifting procedure cannot directly be applied to the
variables inP(C)∪R(C). In this exampleC = {1,2,3,4} is a 3-cover, butXP(C)|R(C) =
∅. In fact, the corresponding valid inequality is facet-defining forconv(X{9,10,11}|R(C)).

Below we define a different lifting procedure which is still defined onP(C) ∪ R(C)
and generates facet-defining inequalities. Note that the only difference between the two
lifting procedures consists of the polytope over which the maximization problem is
defined.
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Fig. 2. Example k-cover

Definition 8. Let C be a K-cover andπ be a PFRS-order forC which represents the
order of lifting variables. Let the lifting coefficient for a variablej ∈ P(C) be determined
by

α j = K − 1− max
x∈X:
xj=0

∑
i∈C

xi +
∑

i∈P(C)∩pπ( j)

αi (1− xi )

 (21)

and for a variablej ∈ R(C) by

α j = K − 1− max
x∈X:
xj=1

∑
i∈C

xi +
∑

i∈P(C)

αi (1− xi )+
∑

i∈R(C)∩pπ( j)

αi xi

 (22)

Theorem 7. Let

• C ⊆ V be a K-cover
• π be a PFRS-order forC
• the lifting coefficients for variables inP(C) be determined according to (21)
• the lifting coefficients for variables inR(C) be determined according to (22)

then the resulting inequality∑
i∈C

xi +
∑

i∈P(C)

αi (1− xi )+
∑

i∈R(C)

αi xi ≤ K − 1 (23)

a) is valid, andαi ≥ 0, for all i ∈ P(C) ∪ R(C)
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b) defines a facet of the PCKP-polytopeconv(X).

Proof. Both validity and nonnegativity of the lifting coefficients can be proved easily
using inductive arguments. We will prove the remainder of our claim by constructing
|V|−1 linearly independent vectors (directions) in the face described by the inequality.
These vectors are constructed as the difference of two vectors, both with the following
properties:

(i) the vector satisfies the knapsack constraint;
(ii) the vector satisfies the precedence constraints;
(iii) the vector satisfies the lifted inequality at equality.

Properties (i) and (ii) imply that the vector is inconv(X), whereas property (iii)
guarantees that the vector is in the face described by the inequality. For ease of notation,
let P0(C) = { j ∈ P(C)|α j = 0} andP>(C) = { j ∈ P(C)|α j > 0}. Note that for each
i ∈ P>(C) the number of items inC which arenot successors ofi is less than or equal
to K −2. If there were more thanK −2 items inC which arenotsuccessors ofi , say set
S⊆ C consisting ofK − 1 items, then the maximization problem in (21) for variable
xi would have value at leastK − 1 since the items inT(S) could be set to one. In other
words, ifS⊂ C containsK −1 elements, theni is a predecessor of at least one element
from S. This property is used at several occasions in the remainder of the proof.

LetC = {1, ..., |C|}. For j = 1, ..., |C|−1 letCj ⊆ C\{ j, j+1}with |Cj | = K−2.
Next, define

φ j = xT(C j∪{ j, j+1})\{ j+1}

ψ j = xT(C j∪{ j, j+1})\{ j }

yj = φ j − ψ j

Then the vectorsyj , j = 1, ..., |C| − 1 are clearly linearly independent. Moreover,
φ j satisfies properties (i) and (ii) by definition: we takeK items fromC and all their
predecessors; after that we remove one of the items from theK items chosen. Clearly,
the vectorφ j also satisfies property (iii): we haveK − 1 elements fromC, and thus the
first term of the left-hand side of (23) equalsK−1. Since the other terms are nonnegative
and the equation is valid, we must have that equality holds. For vectorψ j , (i), (ii), and
(iii) can be shown similarly.

For j ∈ P0(C), let θ j be the vector for which the maximum in (21) is attained.
Let Cj = {i ∈ C|θ j

i = 1}. Thus,∀i∈T(C j )θ
j
i = 1. Moreover, we may assume that

∀i 6∈T(C j )θ
j
i = 0: Clearly, this maintains feasibility with regard to both the knapsack

constraint, and the precedence constraints. It remains to show that the maximum in (21)
is not decreased. Ifi ∈ C \ Cj θ

j
i = 0 by definition ofCj . If i ∈ P(C) \ T(Cj ), setting

θ
j
i = 0 can not have a decreasing effect on the maximum in (21), since(1−xi ) becomes

positive, and the objective coefficient of(1− xi ) in (21) is nonnegative. Ifi ∈ R(C), the
objective coefficient ofxi is zero in (21).
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We define

φ
j
i =

{
1 i ∈ T(Cj ) ∪ T( j)∪ T(P>(C) ∩ sπ( j))
0 otherwise

ψ
j
i =

{
1 i ∈ T(Cj ) ∪ P( j) ∪ T(P>(C) ∩ sπ( j))
0 otherwise

Note thatφ j − ψ j is the j -th unit vector, sincej ∈ T( j) but j /∈ T(Cj ) ∪ P( j) ∪
T(P>(C)∩sπ( j)) (Note thatθ j

j = 0, see (21) ). It remains to show thatφandψ satisfy (i),
(ii), and (iii). To show that the knapsack constraint is satisfied, we construct an extension
ofφ that does so. Let̄Cj be an extension ofCj with K−1 elements fromC. If j ∈ T(C̄ j )

take an arbitraryi ∈ C \ C̄ j . Otherwise choosei ∈ C \ C̄ j such thatj is a predecessor
of i . By definition ofK -covers, the setT(C̄ j ∪{i })\{i } satisfies the knapsack constraint.
Clearly,T(Cj ) andT( j) are subsets ofT(C̄ j ∪ {i }) \ {i }. Furthermore,P>(C) ⊂ T(C̄ j ),
sinceT(C̄ j ) containsK − 1 elements fromC. Thus,P>(C) ∩ sπ( j) ⊂ T(C̄ j ), and thus
T(P>(C) ∩ sπ( j)) ⊂ T(C̄ j ), andT(C̄ j ) ⊆ T(C̄ j ∪ {i }) \ {i }.

The precedence constraints hold by construction ofφ j .
To show that (iii) is satisfied byφ j , we show thatφ j obtains the same value in the

maximum of (21) asθ j , i.e., K − 1. This is true becauseφ j is an extension ofθ j with
elements fromsπ( j) ∪ { j }. This trivially holds forP>( j) ∩ sπ( j) and{ j }. It also holds
for the predecessors of both sets, i.e.,T(P>( j)∩ sπ( j)) andT( j) by the definition ofπ.
Since elements fromsπ( j) have no contribution to the maximum of (21)φ j andθ j have
the same value. Next, the terms in the maximum of (21) are a subset of the terms in (23)
with a value ofK − 1. The remaining terms are nonnegative, and hence, by validity of
the inequality, therefore zero. Thus, (23) is satisfied at equality. Similar arguments show
that (i), (ii), and (iii) hold forψ.

Next, let j ∈ P>(C), and letθ j be the vector for which the maximum in (21) is
attained. W.l.o.g. assume thatθ j

i = 0 for i ∈ R(C) and fori ∈ P(C) such thati is not
a predecessor of an element inC which is set to one. As indicated in the above, we can
again extend the solutionθ j

i to a solutionψ j , in which all variables inT(P>(C)∩sπ( j))
are included in the knapsack. Next, letφ j be any vector withK −1 elements inC equal
to one, andφ j

i = 0, for i ∈ R(C). Analogously as in the above, one can verify thatψ j

andφ j satisfy properties (i)-(iii). Defineyj = φ j − ψ j , thenyj
j = 1 andyj

i = 0, for
i ∈ P>(C) ∩ sπ( j) andi ∈ R(C).

Finally, for j ∈ R(C), letθ j be the vector for which the maximum in (22) is attained.
W.l.o.g., assume thatθ j

i = 0, for i ∈ R(C) ∩ sπ( j). Let Cj ⊂ C with |Cj | = K − 1.
Next, define

φ j = θ j

ψ j = xT(C j )

yj = φ j − ψ j

Then bothφ j andψ j satisfy properties (i)-(iii). Finally,yj
j = 1 andyj

i = 0 for i ∈ sπ( j).
We leave it to the reader to verify that the|V| − 1 vectors as defined in the above

are linearly independent.
ut
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The following example shows that Theorem 7 does not necessarily hold if we allow
for more general lifting orders.

n n n n

n

n1 2 3 4 6

5

�
�
�
�

�
�
��

S
S

S
S

C
C
CC

ai = 4, i ∈ {1, ..., 4}

ai = 2, i ∈ {5}

ai = 10, i ∈ {6}

b= 10

Fig. 3. Example 2

Now the set{1,2,3,4} is a 3-cover and hence

4∑
i=1

xi ≤ 2

is a valid inequality. If we first lift variablex6 according to (22) and thenx5 according
to (21) we obtain the inequality

4∑
i=1

xi + 2x6 ≤ 2

which is valid but not facet-defining forconv(X).

5. Computational results and concluding remarks

To gain insight in the effectiveness of the proposed facets in this paper, reconsider the ex-
ample of Subsection 3.4. In this small example 36 covers were found, which by applying
different PFRS-orders led to a total of 63 diferent facet-defining inequalities. Further-
more sevenK -covers were found (11 different facets), and 24 (1,k)-configurations
(leading to 100 different facets).

In the five problem instances in Table 2 nodes in the same "layer" of the graph are
given the same, but randomly chosen, objective function coefficient. For each of these
5 problem instances, the value of the LP-relaxation, the IP-value and the value of the
LP-relaxation after adding all 174 facets to the description were computed.

These results indicate that the effect of the valid inequalities may be significant.
Problem instance obj1b represents a situation where nodes in layer three (i.e. nodes 1
through 7) have a low objective coefficient compared to the other nodes.

Next, 9 objective functions in which each node is given a random objective coefficient
were generated. Different ranges of objective coefficients were tested. Table 3 reports
on the computational results for these problem instances.
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Table 2.Computational results for problem instance in Fig. 1

problem LP-value LP + facets IP-value %gap closed

obj1 49.3 47.8 46 45%
obj1a 57.0 51.8 48 58%
obj1b 104.0 104.0 100 0%
obj1c 242.0 235.9 227 41%
obj1d 270.6 244.6 225 57%

Table 3.Computational results for problem instance in Fig. 1

problem LP-value LP + facets IP-value %gap closed

obj2 124.0 119.1 119 97%
obj3 116.0 110.3 110 95%
obj4 104.6 97.0 97 100%
obj5 179.8 176.0 176 100%
obj6 231.7 228.3 226 60%
obj7 233.7 223.7 222 85%
obj8 274.0 251.4 248 87%
obj9 53.5 51.5 51 80%

obj10 43.2 41.0 41 100%

The results show that a large proportion of the gapcanbe closed by including the
facets proposed in this paper. In fact, only PFRS-orders were considered in the tests,
hence more valid inequalities can be included by allowing for more general lifting orders
as indicated in this paper. Finally we state some remarks on possible future research
directions.

Firstly, note that problem instance obj1c shows that for certain problem instances
the facet-defining inequalities discussed in this paper are not very useful. Direct general-
izations of other well-known classes of valid inequalities for regular knapsack problems
could of course form a fruitful area for future research. Next, to incorporate such in-
equalities into a branch-and-cut procedure, the separation problem must be addressed.
Again, generalizations of separation heuristics for ordinary cover inequalities can be
investigated. Thirdly, the difference in the definition of a minimal induced cover used
in this paper and by Boyd ([5]), and the definition employed by Park and Park ([16])
deserves more research. Finally, the lifting procedure as proposed in Section 4 is only
proven to be a valid procedure for valid inequalities arising from K-covers. In fact, in the
proof detailed information from the definition of a K-cover is used. The question arises
whether these lifting ideas can also be used for different and/or more general classes of
valid inequalities.
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