106,011 research outputs found
Outage Efficient Strategies for Network MIMO with Partial CSIT
We consider a multi-cell MIMO downlink (network MIMO) where base-stations
(BS) with antennas connected to a central station (CS) serve
single-antenna user terminals (UT). Although many works have shown the
potential benefits of network MIMO, the conclusion critically depends on the
underlying assumptions such as channel state information at transmitters (CSIT)
and backhaul links. In this paper, by focusing on the impact of partial CSIT,
we propose an outage-efficient strategy. Namely, with side information of all
UT's messages and local CSIT, each BS applies zero-forcing (ZF) beamforming in
a distributed manner. For a small number of UTs (), the ZF beamforming
creates parallel MISO channels. Based on the statistical knowledge of these
parallel channels, the CS performs a robust power allocation that
simultaneously minimizes the outage probability of all UTs and achieves a
diversity gain of per UT. With a large number of UTs (),
we propose a so-called distributed diversity scheduling (DDS) scheme to select
a subset of \Ks UTs with limited backhaul communication. It is proved that
DDS achieves a diversity gain of B\frac{K}{\Ks}(M-\Ks+1), which scales
optimally with the number of cooperative BSs as well as UTs. Numerical
results confirm that even under realistic assumptions such as partial CSIT and
limited backhaul communications, network MIMO can offer high data rates with a
sufficient reliability to individual UTs.Comment: 26 pages, 8 figures, submitted to IEEE Trans. on Signal Processin
Optimal Channel Training in Uplink Network MIMO Systems
We consider a multi-cell frequency-selective fading uplink channel (network
MIMO) from K single-antenna user terminals (UTs) to B cooperative base stations
(BSs) with M antennas each. The BSs, assumed to be oblivious of the applied
codebooks, forward compressed versions of their observations to a central
station (CS) via capacity limited backhaul links. The CS jointly decodes the
messages from all UTs. Since the BSs and the CS are assumed to have no prior
channel state information (CSI), the channel needs to be estimated during its
coherence time. Based on a lower bound of the ergodic mutual information, we
determine the optimal fraction of the coherence time used for channel training,
taking different path losses between the UTs and the BSs into account. We then
study how the optimal training length is impacted by the backhaul capacity.
Although our analytical results are based on a large system limit, we show by
simulations that they provide very accurate approximations for even small
system dimensions.Comment: 15 pages, 7 figures. To appear in the IEEE Transactions on Signal
Processin
The GRAVITY fringe tracker: correlation between optical path residuals and atmospheric parameters
After the first year of observations with the GRAVITY fringe tracker, we
compute correlations between the optical path residuals and atmospheric and
astronomical parameters. The median residuals of the optical path residuals are
180 nm on the ATs and 270 nm on the UTs. The residuals are uncorrelated with
the target magnitudes for Kmag below 5.5 on ATs (9 on UTs). The correlation
with the coherence time is however extremely clear, with a drop-off in fringe
tracking performance below 3 ms.Comment: submitted to SPIE Astronomical Telescopes & Instrumentation 201
Effect of operating temperature on direct recycling aluminium chips (AA6061) in hot press forging process
A method of solid-state recycling aluminum alloy using hot press forging process was studied as well as the possibility of the recycled chip to be used as secondary resources. This paper presents the results of recycled AA6061 aluminium alloy chip using different operating temperature for hot press forging process. Mechanical properties and microstructure of the recycled specimens and as-received (reference) specimen were investigated. The recycled specimens exhibit a good potential in the strength properties. The result for yield strength (YS) and ultimate tensile strength (UTS) at the minimum temperature 430˚C is 25.8 MPa and 27.13 MPa. For the maximum operating temperature 520˚C YS and UTS are 107.0MPa and 117.53 MPa. Analysis for different operating temperatures shows that the higher temperatures giving better result on mechanical properties and finer microstructure. The strength of recycled specimen increases due to the grain refinement strengthening whereas particle dispersion strengthening has minor effects. In this study, the recycled AA6061 chip shows the good potential in strengthening as the comparison of using only 17.5% of suggested pressure (70.0/400.0) MPa, the UTS exhibit 35.8% (117.58/327.69) MPa. This shows a remarkable potential of direct recycling by using hot press forging process
Modification of silicon carbide fibers for use in SiC/Ti composites
The degradation of silicon carbide fibers during exposure to conditions typical of composite fabrication was investigated. The tensile strength of pristine fibers and fibers sputtered with thin metal coatings were determined before and after treatment at 870 C for one hour in vacuum. Each fiber strength distribution was related by an analytical procedure to a projected composite ultimate tensile strength (PC UTS). The results indicate that a thin aluminum diffusion barrier can yield a 150 percent increase in PC UTS over the baseline SiC/Ti system
Hunting for New Physics with Unitarity Boomerangs
Although the unitarity triangles () carry information about the
Kobayashi-Maskawa (KM) quark mixing matrix, it explicitly contains just three
parameters which is one short to completely fix the KM matrix. It has been
shown recently, by us, that the unitarity boomerangs () formed using two
, with a common inner angle, can completely determine the KM matrix and,
therefore, better represents, quark mixing. Here, we study detailed properties
of the , of which there are a total 18 possible. Among them, there is only
one which does not involve very small angles and is the ideal one for practical
uses. Although the have different areas, there is an invariant quantity,
for all , which is equal to a quarter of the Jarlskog parameter
squared. Hunting new physics, with a unitarity boomerang, can reveal more
information, than just using a unitarity triangle.Comment: Latex 9 pages with two figures. References updated
Recommended from our members
Design of Experiments Approach for Statistical Classification of Stereolithography Manufacturing Build Parameters: Effects of Build Orientation on Mechanical Properties for ASTM D-638 Type I Tensile Test Specimens of DSM Somos® 11120 Resin
A statistical design of experiments (DOE) approach was used to determine if specific build
orientation parameters impacted mechanical strength of fabricated parts. A single platform (10-
inch by 10 inch cross-section) on the 3D Systems Viper si2 machine was designed to hold 18,
ASTM D-638 Type I samples built in six different orientations (called Location) with three
samples built for each location. The DOE tested four factors: Location, Position, Axis, and
Layout. Each sample within a Location was labeled as Positions 1, 2, or 3 depending on the
distance from the center of the platform with Position 1 being the closest to the center. Samples
were fabricated parallel with the x-axis, y-axis, or 45o
to both axes (called Axis 1, 2, and 3,
respectively) and were fabricated either flat or on an edge relative to the x-y plane (called Layout
1 and 2, respectively). The results from the statistical analyses showed that Axis, Location, and
Position had no significant effect on UTS or E. However, Layout (or whether a sample was built
flat or on an edge) was shown to have a statistically significant effect on UTS and E (at a 95%
level of confidence). This result was not expected since a comparison of the average UTS for
each Layout showed only a 1.2% difference (6966 psi versus 7050 psi for samples built flat and
on an edge, respectively). Because of the small differences in means for UTS, the statistical
differences between Layout most likely would not have been identified without performing the
DOE. Furthermore, Layout was the only factor that tested different orientations of build layers
(or layer-to-layer interfaces) with respect to the sample part, and thus, it appears that the
orientation of the build layer with respect to the fabricated part has a significant effect on the
resulting mechanical properties. This study represents one of many to follow that is using
statistical analyses to identify and classify important fabrication parameters on mechanical
properties for layer manufactured parts. Although stereolithography is the focus of this work, the
techniques developed here can be applied to any layered manufacturing technology.Mechanical Engineerin
- …
