93,867 research outputs found
Investigating the role of uncoupling of troponin I phosphorylation from changes in myofibrillar Ca(2+)-sensitivity in the pathogenesis of cardiomyopathy.
Contraction in the mammalian heart is controlled by the intracellular Ca2+ concentration as it is in all striated muscle, but the heart has an additional signalling system that comes into play to increase heart rate and cardiac output during exercise or stress. β-adrenergic stimulation of heart muscle cells leads to release of cyclic-AMP and the activation of protein kinase A which phosphorylates key proteins in the sarcolemma, sarcoplasmic reticulum and contractile apparatus. Troponin I (TnI) and Myosin Binding Protein C (MyBP-C) are the prime targets in the myofilaments. TnI phosphorylation lowers myofibrillar Ca2+-sensitivity and increases the speed of Ca2+-dissociation and relaxation (lusitropic effect).Recent studies have shown that this relationship between Ca2+-sensitivity and TnI phosphorylation may be unstable. In familial cardiomyopathies, both dilated and hypertrophic (DCM and HCM), a mutation in one of the proteins of the thin filament often results in the loss of the relationship (uncoupling) and blunting of the lusitropic response. For familial dilated cardiomyopathy in thin filament proteins it has been proposed that this uncoupling is causative of the phenotype. Uncoupling has also been found in human heart tissue from patients with hypertrophic obstructive cardiomyopathy as a secondary effect. Recently, it has been found that Ca2+-sensitizing drugs can promote uncoupling, whilst one Ca2+-desensitising drug Epigallocatechin 3-Gallate (EGCG) can reverse uncoupling.We will discuss recent findings about the role of uncoupling in the development of cardiomyopathies and the molecular mechanism of the process
Myocardial Architecture and Patient Variability in Clinical Patterns of Atrial Fibrillation
Atrial fibrillation (AF) increases the risk of stroke by a factor of four to
five and is the most common abnormal heart rhythm. The progression of AF with
age, from short self-terminating episodes to persistence, varies between
individuals and is poorly understood. An inability to understand and predict
variation in AF progression has resulted in less patient-specific therapy.
Likewise, it has been a challenge to relate the microstructural features of
heart muscle tissue (myocardial architecture) with the emergent temporal
clinical patterns of AF. We use a simple model of activation wavefront
propagation on an anisotropic structure, mimicking heart muscle tissue, to show
how variation in AF behaviour arises naturally from microstructural differences
between individuals. We show that the stochastic nature of progressive
transversal uncoupling of muscle strands (e.g., due to fibrosis or gap
junctional remodelling), as occurs with age, results in variability in AF
episode onset time, frequency, duration, burden and progression between
individuals. This is consistent with clinical observations. The uncoupling of
muscle strands can cause critical architectural patterns in the myocardium.
These critical patterns anchor micro-re-entrant wavefronts and thereby trigger
AF. It is the number of local critical patterns of uncoupling as opposed to
global uncoupling that determines AF progression. This insight may eventually
lead to patient specific therapy when it becomes possible to observe the
cellular structure of a patient's heart.Comment: 5 pages, 4 figures. For supplementary materials please contact Kishan
A. Manani at [email protected]
Transient Uncoupling Induces Synchronization
Finding conditions that support synchronization is a fertile and active area
of research with applications across multiple disciplines. Here we present and
analyze a scheme for synchronizing chaotic dynamical systems by transiently
uncoupling them. Specifically, systems coupled only in a fraction of their
state space may synchronize even if fully coupled they do not. Although, for
many standard systems, coupling strengths need to be bounded to ensure
synchrony, transient uncoupling removes this bound and thus enables
synchronization in an infinite range of effective coupling strengths. The
presented coupling scheme thus opens up the possibility to induce synchrony in
(biological or technical) systems whose parameters are fixed and cannot be
modified continuously.Comment: 5 pages, 6 figure
Synchronizing noisy nonidentical oscillators by transient uncoupling
Synchronization is the process of achieving identical dynamics among coupled
identical units. If the units are different from each other, their dynamics
cannot become identical; yet, after transients, there may emerge a functional
relationship between them -- a phenomenon termed "generalized synchronization."
Here, we show that the concept of transient uncoupling, recently introduced for
synchronizing identical units, also supports generalized synchronization among
nonidentical chaotic units. Generalized synchronization can be achieved by
transient uncoupling even when it is impossible by regular coupling. We
furthermore demonstrate that transient uncoupling stabilizes synchronization in
the presence of common noise. Transient uncoupling works best if the units stay
uncoupled whenever the driven orbit visits regions that are locally diverging
in its phase space. Thus, to select a favorable uncoupling region, we propose
an intuitive method that measures the local divergence at the phase points of
the driven unit's trajectory by linearizing the flow and subsequently
suppresses the divergence by uncoupling
SKELETAL MUSCLE MITOCHONDRIAL OXIDATIVE CAPACITY AND UNCOUPLING PROTEIN 3 ARE DIFFERENTLY INFLUENCED BY SEMISTARVATION AND REFEEDING
Uncoupling protein 2: a key player and a potential therapeutic target in vascular diseases
Uncoupling protein 2 (UCP2) is an inner mitochondrial membrane protein that belongs to the uncoupling protein family and plays an important role in lowering mitochondrial membrane potential and dissipating metabolic energy with prevention of oxidative stress accumulation. In the present article, we will review the evidence that UCP2, as a consequence of its roles within the mitochondria, represents a critical player in the predisposition to vascular disease development in both animal models and in humans, particularly in relation to obesity, diabetes, and hypertension. The deletion of the UCP2 gene contributes to atherosclerosis lesion development in the knockout mice, also showing significantly shorter lifespan. The UCP2 gene downregulation is a key determinant of higher predisposition to renal and cerebrovascular damage in an animal model of spontaneous hypertension and stroke. In contrast, UCP2 overexpression improves both hyperglycemia- and high-salt diet-induced endothelial dysfunction and ameliorates hypertensive target organ damage in SHRSP. Moreover, drugs (fenofibrate and sitagliptin) and several vegetable compounds (extracts from Brassicaceae, berberine, curcumin, and capsaicin) are able to induce UCP2 expression level and to exert beneficial effects on the occurrence of vascular damage. As a consequence, UCP2 becomes an interesting therapeutic target for the treatment of common human vascular diseases
Quick-disconnect coupling safe transfer of hazardous fluids
Quick-disconnect coupling is used for uncoupling of plumbing during ground-to-vehicle transfer of cryogenic and hazardous fluids. The coupling allows remote positive control of liquid pressure and flow during the transfer operation, remote connection and separation capabilities, and negligible liquid spillage upon disconnection
Electrifying enzymatic bioproduction
A microbial battery couples waste degradation to a specific enzymatic production process. This is enabled by the uncoupling of the waste oxidation process from the enzymatic bioproduction via redox cathodes. The approach can be attractive for small-scale, local production of chemicals from water and/or CO2
Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat
UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP
- …
