15,468 research outputs found

    Stochastic Trust Region Methods with Trust Region Radius Depending on Probabilistic Models

    Full text link
    We present a stochastic trust-region model-based framework in which its radius is related to the probabilistic models. Especially, we propose a specific algorithm, termed STRME, in which the trust-region radius depends linearly on the latest model gradient. The complexity of STRME method in non-convex, convex and strongly convex settings has all been analyzed, which matches the existing algorithms based on probabilistic properties. In addition, several numerical experiments are carried out to reveal the benefits of the proposed methods compared to the existing stochastic trust-region methods and other relevant stochastic gradient methods

    A second-derivative trust-region SQP method with a "trust-region-free" predictor step

    Get PDF
    In (NAR 08/18 and 08/21, Oxford University Computing Laboratory, 2008) we introduced a second-derivative SQP method (S2QP) for solving nonlinear nonconvex optimization problems. We proved that the method is globally convergent and locally superlinearly convergent under standard assumptions. A critical component of the algorithm is the so-called predictor step, which is computed from a strictly convex quadratic program with a trust-region constraint. This step is essential for proving global convergence, but its propensity to identify the optimal active set is Paramount for recovering fast local convergence. Thus the global and local efficiency of the method is intimately coupled with the quality of the predictor step.\ud \ud In this paper we study the effects of removing the trust-region constraint from the computation of the predictor step; this is reasonable since the resulting problem is still strictly convex and thus well-defined. Although this is an interesting theoretical question, our motivation is based on practicality. Our preliminary numerical experience with S2QP indicates that the trust-region constraint occasionally degrades the quality of the predictor step and diminishes its ability to correctly identify the optimal active set. Moreover, removal of the trust-region constraint allows for re-use of the predictor step over a sequence of failed iterations thus reducing computation. We show that the modified algorithm remains globally convergent and preserves local superlinear convergence provided a nonmonotone strategy is incorporated

    On Solving L-SR1 Trust-Region Subproblems

    Full text link
    In this article, we consider solvers for large-scale trust-region subproblems when the quadratic model is defined by a limited-memory symmetric rank-one (L-SR1) quasi-Newton matrix. We propose a solver that exploits the compact representation of L-SR1 matrices. Our approach makes use of both an orthonormal basis for the eigenspace of the L-SR1 matrix and the Sherman-Morrison-Woodbury formula to compute global solutions to trust-region subproblems. To compute the optimal Lagrange multiplier for the trust-region constraint, we use Newton's method with a judicious initial guess that does not require safeguarding. A crucial property of this solver is that it is able to compute high-accuracy solutions even in the so-called hard case. Additionally, the optimal solution is determined directly by formula, not iteratively. Numerical experiments demonstrate the effectiveness of this solver.Comment: 2015-0
    • …
    corecore