2 research outputs found

    On Optimal Route Computation of Mobile Sink in a Wireless Sensor Network

    Get PDF
    There is evidence of a range of sensor networks applications where a mobile sink entity (node) is utilised for data collection from statically positioned sensor nodes in a sensor field. The mobile sink is typically required to cover the sensor field by physical motion in order to obtain the values from the sensor nodes in a periodic fashion. This characteristic leads to a very interesting problem of determining the optimal route of the mobile sink, in terms of distance travelled, to accomplish the data collection from all the sensor nodes. This minimum distance problem that is spanned from the design nature of the network has very intriguing and motivating connections with a set of classic computational problems. These cohesions and similarities are explored in this paper, and the computational complexity is analysed. The applicability of numerical solutions to the current problem is discussed and a numerical heuristic is provided to arrive at an approximate answer that is 'close' to the actual solution. An evaluation of the proposed approach is also provided through experimental results

    Multi-robot mission optimisation : an online approach for optimised, long range inspection and sampling missions

    Get PDF
    Mission execution optimisation is an essential aspect for the real world deployment of robotic systems. Execution optimisation can affect the outcome of a mission by allowing longer missions to be executed or by minimising the execution time of a mission. This work proposes methods for optimising inspection and sensing missions undertaken by a team of robots operating under communication and budget constraints. Regarding the inspection missions, it proposes the use of an information sharing architecture that is tolerant of communication errors combined with multirobot task allocation approaches that are inspired by the optimisation literature. Regarding the optimisation of sensing missions under budget constraints novel heuristic approaches are proposed that allow optimisation to be performed online. These methods are then combined to allow the online optimisation of long-range sensing missions performed by a team of robots communicating through a noisy channel and having budget constraints. All the proposed approaches have been evaluated using simulations and real-world robots. The gathered results are discussed in detail and show the benefits and the constraints of the proposed approaches, along with suggestions for further future directions
    corecore