
Multi-robot mission optimisation:
An online approach for optimised, long
range inspection and sampling missions

Nikolaos Tsiogkas

Ocean Systems Laboratory

School of Engineering and Physical Sciences

Heriot-Watt University

A thesis submitted for the degree of

Doctor of Philosophy

May 5, 2019

c© The copyright in this thesis is owned by the author. Any quotation from the thesis
or use of any of the information contained in it must acknowledge this thesis as the

source of the quotation or information.



Abstract

Mission execution optimisation is an essential aspect for the real world deployment
of robotic systems. Execution optimisation can affect the outcome of a mission by
allowing longer missions to be executed or by minimising the execution time of a
mission.

This work proposes methods for optimising inspection and sensing missions
undertaken by a team of robots operating under communication and budget con-
straints. Regarding the inspection missions, it proposes the use of an information
sharing architecture that is tolerant of communication errors combined with multi-
robot task allocation approaches that are inspired by the optimisation literature.
Regarding the optimisation of sensing missions under budget constraints novel
heuristic approaches are proposed that allow optimisation to be performed online.
These methods are then combined to allow the online optimisation of long-range
sensing missions performed by a team of robots communicating through a noisy
channel and having budget constraints.

All the proposed approaches have been evaluated using simulations and real-
world robots. The gathered results are discussed in detail and show the benefits
and the constraints of the proposed approaches, along with suggestions for further
future directions.

i



To my parents, Dimitris and Stella, and my partner Dragana.

ii



Acknowledgements

It has been already six years since I have joined the Ocean Systems Laboratory
(OSL) under the supervision of Prof. David Lane and Prof. Yvan Petillot. From
the first day the team at the OSL welcomed me and made me feel it as a second
family, supporting me to grow and helping me with any issues that were presented
during the PhD process.

I would specifically like to thank Prof. David Lane who gave me the opportu-
nity to study as PhD in the OSL and for allowing me to become an independent
and confident researcher as he said in my first days in the lab. In addition I
would like to thank Dr. Zeyn Saigol whose invaluable guidance in the beginning
of my PhD allowed me to have a solid understanding of how research should be
performed. I would also like to thank my family and friends, both in the OSL and
allover the world, that were always there to support me and discuss any ideas and
issues. Special thanks should be attributed to my partner Dragana, who patiently
supported me through the last and hardest, yet most productive and enjoyable
parts of the PhD. Finally, I would like to thank all the people at Intermodalics
who supported and facilitated me finishing this work. To all of you who are men-
tioned, and to those who may be forgotten by mistake you will have my eternal
gratitude. Thank you.

iii



ACADEMIC REGISTRY
Research Thesis Submission
Please note this form should be bound into the submitted thesis.

Name: Nikolaos Tsiogkas

School: EPS

Version: (i.e. First, 
Resubmission, Final)

Final Degree Sought: PhD

Declaration 

In accordance with the appropriate regulations I hereby submit my thesis and I declare that:

1. The thesis embodies the results of my own work and has been composed by myself
2. Where appropriate, I have made acknowledgement of the work of others
3. Where the thesis contains published outputs under Regulation 6 (9.1.2) these are accompanied by a critical review 

which accurately describes my contribution to the research and, for multi-author outputs, a signed declaration 
indicating the contribution of each author (complete Inclusion of Published Works Form – see below)

4. The thesis is the correct version for submission and is the same version as any electronic versions submitted*. 
5. My thesis for the award referred to, deposited in the Heriot-Watt University Library, should be made available for 

loan or photocopying and be available via the Institutional Repository, subject to such conditions as the Librarian 
may require

6. I understand that as a student of the University I am required to abide by the Regulations of the University and to 
conform to its discipline.

7. Inclusion of published outputs under Regulation 6 (9.1.2) shall not constitute plagiarism. 
8. I confirm that the thesis has been verified against plagiarism via an approved plagiarism detection application e.g. 

Turnitin.

* Please note that it is the responsibility of the candidate to ensure that the correct version of the thesis is submitted.

Signature of 
Candidate:

Date: 11/07/2019

Submission 

Submitted By (name in capitals):

Signature of Individual Submitting:

Date Submitted:

For Completion in the Student Service Centre (SSC)

Received in the SSC by (name in 
capitals):

Method of Submission 
(Handed in to SSC; posted through 
internal/external mail):

E-thesis Submitted (mandatory for
final theses)

Signature: Date:

Page 1 of 2
RDC Clerk/Nov 2018



ACADEMIC REGISTRY  

Inclusion of Published Works

Declaration 

This thesis contains one or more multi-author published works. In accordance with Regulation 6 (9.1.2) I hereby declare 
that the contributions of each author to these publications is as follows:

Citation details N. Tsiogkas and D. M. Lane, An Evolutionary Algorithm for Online, Resource-
Constrained, Multivehicle Sensing Mission Planning, IEEE Robotics and 
Automation Letters, Volume 3, Number 2, pages 1199 – 1206, 2018

Author 1 Theoretical and algorithmic work, full implementation, experimental results, result
analysis, paper writing

Author 2 Supervision

Signature:

Date:

Citation details N. Tsiogkas, V.  De Carolis and D. M. Lane, Towards an Online Heuristic Method
for Energy-Constrained Underwater Sensing Mission Planning, Intelligent Robots
and Systems (IROS), 2017 IEEE/RSJ International Conference on, 2017

Author 1 Theoretical and algorithmic work, full implementation, experimental results, result
analysis, paper writing

Author 2 Result analysis, paper writing

Signature:

Date:

Citation details N. Tsiogkas, V.  De Carolis and D. M. Lane, Energy-constrained informative 
routing for AUVs, OCEANS 2016-Shanghai, 2016

Author 1 Theoretical and algorithmic work, full implementation, experimental results, result
analysis, paper writing

Author 2 Result analysis, paper writing

Signature:

Date:

Page 2 of 2
RDC Clerk/Nov 2018



Contents

Abstract i

Acknowledgements iii

List of Figures vii

List of Tables x

List of Algorithms xi

Thesis’ Publications xii

1 Introduction 1
1.1 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Problem definition 7
2.1 The Multi-Robot Task Allocation (MRTA) problem . . . . . . . . . 7

2.1.1 Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The sample collection problem . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



Contents v

3 Literature review 20
3.1 MRTA problem literature . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 No Dependencies . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 In-schedule Dependencies . . . . . . . . . . . . . . . . . . . 21
3.1.3 Cross-schedule Dependencies . . . . . . . . . . . . . . . . . . 23
3.1.4 Complex Dependencies . . . . . . . . . . . . . . . . . . . . . 27

3.2 Sampling problem literature . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 The orienteering problem . . . . . . . . . . . . . . . . . . . . 28
3.2.2 The team orienteering problem . . . . . . . . . . . . . . . . 31
3.2.3 Sampling and the orienteering problem . . . . . . . . . . . . 33

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 System 36
4.1 Reliable information sharing under communication constraints . . . 37
4.2 Integration on real platforms . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Multi-robot task allocation under communication constraints 41
5.1 Underwater inspection mission . . . . . . . . . . . . . . . . . . . . . 42
5.2 MRTA Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1 Task description . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 Utility description . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 MRTA as an optimisation problem . . . . . . . . . . . . . . 48
5.2.4 Data modelling . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Evaluation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.2 Real vehicle results . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Sample collection optimisation 69
6.1 Mixed Integer Quadratic Programming Formulation . . . . . . . . . 70
6.2 Genetic Algorithm Heuristic . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Contents vi

6.3.1 Parameter tuning for genetic algorithms . . . . . . . . . . . 87
6.4 Reuslts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Large scale sensing missions 99
7.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Two level optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.3 Budget calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.4.1 Random mission generation . . . . . . . . . . . . . . . . . . 107
7.4.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . 109

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 Conclusion and Future Work 114
8.1 Major findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Appendices 119

A On optimisation 120
A.1 The travelling salesman problem . . . . . . . . . . . . . . . . . . . . 120
A.2 Exact solution methods . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.2.1 Linear programming . . . . . . . . . . . . . . . . . . . . . . 122
A.2.2 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.2.3 Cutting planes . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.3 Heuristic solution methods . . . . . . . . . . . . . . . . . . . . . . . 138
A.3.1 Ant colony optimisation . . . . . . . . . . . . . . . . . . . . 139
A.3.2 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.3.3 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . 142

A.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 145



List of Figures

1.1 System architecture for one vehicle . . . . . . . . . . . . . . . . . . 5

2.1 A MRTA problem example . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 A MRTA problem solution for the ND case . . . . . . . . . . . . . . 13
2.3 MRTA problem for the ID case and its solution . . . . . . . . . . . 14
2.4 A MRTA problem solution for the XD case . . . . . . . . . . . . . . 15
2.5 A MRTA problem solution for the CD case . . . . . . . . . . . . . . 16
2.6 A sampling problem setting with two solutions . . . . . . . . . . . . 18

4.1 The software stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Temporal ontological representation . . . . . . . . . . . . . . . . . . 38
4.3 Data Exchange Manager Flowchart . . . . . . . . . . . . . . . . . . 39
4.4 Turtlebot integration software stack . . . . . . . . . . . . . . . . . . 40

5.1 SSS images of antiquities . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 SSS images of antiquities . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Iver-3 AUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Nessie AUV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Kinematically constrained inspection patterns . . . . . . . . . . . . 47
5.6 Solution to an MTSP instance . . . . . . . . . . . . . . . . . . . . . 50
5.7 Solution to an MDmTSP instance . . . . . . . . . . . . . . . . . . . 52
5.8 Solution to an MDmTSP instance with minimum visits . . . . . . . 53
5.9 Data representation for DWM architecture . . . . . . . . . . . . . . 54
5.10 AUV Execution state machines . . . . . . . . . . . . . . . . . . . . 56
5.11 k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.12 Simulated Distance-PER Results . . . . . . . . . . . . . . . . . . . 61
5.13 Simulated Time-PER Results . . . . . . . . . . . . . . . . . . . . . 62

vii



List of Figures viii

5.14 OSL Turtlebot Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.15 Real robot experiment paths for the first target pattern . . . . . . . 66
5.16 Real robot experiment paths for the second target pattern . . . . . 67

6.1 Solution to a COP instance . . . . . . . . . . . . . . . . . . . . . . 72
6.2 Solution to a COP instance . . . . . . . . . . . . . . . . . . . . . . 75
6.3 COP Crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Correlation range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.6 Method performance for different number of robots . . . . . . . . . 95
6.7 Method performance for different budgets . . . . . . . . . . . . . . 97
6.8 Comparison of the paths generated for three vehicles having full

budget. In 6.8a the gathered utility is 79.662 and the time to cal-
culate is 5847.81 seconds. In 6.8b the gathered utility is 76.433 and
the time to calculate is 690.74 seconds. In 6.8c the gathered utility
is 78.770 and the time to calculate is 0.8597 seconds. . . . . . . . . 97

7.1 2-level mission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.2 2-level sampling regions connection . . . . . . . . . . . . . . . . . . 103
7.3 Starting sampling point calculation . . . . . . . . . . . . . . . . . . 104
7.4 Finishing sampling point calculation . . . . . . . . . . . . . . . . . 105
7.5 2-level sampling regions starting and ending candidates . . . . . . . 106
7.6 2-level area size results . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.7 2-level budget results . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.8 2-level number of robots results . . . . . . . . . . . . . . . . . . . . 112

A.1 Solution to a random TSP instance . . . . . . . . . . . . . . . . . . 121
A.2 Geometrical representation of constraints and feasible region for a

linear programming problem . . . . . . . . . . . . . . . . . . . . . . 126
A.3 Geometrical representation of LP objective function . . . . . . . . . 127
A.4 Integer programming feasible region . . . . . . . . . . . . . . . . . . 128
A.5 Integer programming branch feasible regions . . . . . . . . . . . . . 129
A.6 Integer programming branch enumeration tree 1 . . . . . . . . . . . 130
A.7 Feasible regions after subdividing region L1. . . . . . . . . . . . . . 130
A.8 Integer programming branch enumeration tree 2 . . . . . . . . . . . 131
A.9 Feasible regions after subdividing region L4. . . . . . . . . . . . . . 132



List of Figures ix

A.10 Integer programming branch enumeration tree 3 . . . . . . . . . . . 133
A.11 Integer programming branch enumeration tree 4 . . . . . . . . . . . 134
A.12 Geometric representation of the objective function after finding the

optimal solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.13 Cutting planes initial geometric representation . . . . . . . . . . . . 136
A.14 Cutting planes 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.15 Cutting planes 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.16 Ant Colony Optimisation Experiment . . . . . . . . . . . . . . . . . 140
A.17 Tabu Search Example . . . . . . . . . . . . . . . . . . . . . . . . . . 142
A.18 GA Crossover Example . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.19 GA Mutation Example . . . . . . . . . . . . . . . . . . . . . . . . . 144



List of Tables

5.1 Real robot experiment results for the first target pattern . . . . . . 65
5.2 Real robot experiment results for the second target pattern . . . . . 65

6.1 Genetic algorithm parameters . . . . . . . . . . . . . . . . . . . . . 90
6.2 Utility gained for different grid sizes and budgets . . . . . . . . . . 92
6.3 Computation time(s) for different grid sizes and budgets . . . . . . 94
6.4 Parameter ranges and tuned values for the two different methods . 95
6.5 Average time(s) for different algorithms and vehicle numbers . . . . 96
6.6 Average time(s) for different algorithms and different budgets . . . . 98

7.1 Genetic algorithm parameters . . . . . . . . . . . . . . . . . . . . . 110

x



List of Algorithms

5.1 k-Means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1 Genetic Algorithm for the Correlated Orienteering Problem . . . . . 76
6.2 Initialise Population . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Select new population . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Population crossover . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.5 Population mutation . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.6 Genetic Algorithm for the Correlated Team Orienteering Problem . 81
6.7 Random Gene Generation . . . . . . . . . . . . . . . . . . . . . . . 82
6.8 Nearest Neighbour Randomised Adaptive Search Procedure . . . . . 83
6.9 Chromosome Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 84
6.10 Chromosome Crossover . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.11 Chromosome Mutation . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.12 CRS-Tuning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.1 Random Problem Generation . . . . . . . . . . . . . . . . . . . . . 108
A.1 Ant Colony Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 141
A.2 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.3 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xi



Thesis’ Publications

During the course of the PhD studies whose outcome is this work the following
publications have been made:

N. Tsiogkas, G. Papadimitriou, Z. Saigol, and D. Lane, “Efficient multi-auv coop-
eration using semantic knowledge representation for underwater archaeology
missions”, in Oceans ’14 St. John’s, 2014.

N. Tsiogkas, Z. Saigol, and D. Lane, “Distributed multi-auv cooperation methods
for underwater archaeology”, in OCEANS 2015-Genova, IEEE, 2015, pp. 1–5.

N. Tsiogkas, V. De Carolis, and D. M. Lane, “Energy-constrained informative
routing for auvs”, in OCEANS 2016-Shanghai, IEEE, 2016, pp. 1–5.

N. Tsiogkas, V. De Carolis, and D. Lane, “Towards an online heuristic method for
energy-constrained underwater sensing mission planning”, in Intelligent Robots
and Systems (IROS), 2017 IEEE/RSJ International Conference on, IEEE,
2017.

N. Tsiogkas and D. M. Lane, “An evolutionary algorithm for online, resource-
constrained, multivehicle sensing mission planning”, IEEE Robotics and Au-
tomation Letters, vol. 3, no. 2, pp. 1199–1206, Apr. 2018. doi: 10.1109/LRA.

2018.2794578.

xii

http://dx.doi.org/10.1109/LRA.2018.2794578
http://dx.doi.org/10.1109/LRA.2018.2794578


Chapter 1

Introduction

The last few years have seen significant advances in robotic technology which
have led to reliable and affordable systems, which are becoming an indispensable
assistant to science and industry. The use of autonomous robots facilitates the
execution of tasks that are usually dangerous, expensive or time-consuming when
performed by humans. Some examples include space exploration [1], underwater
archaeology [2] and search and rescue [3].

One critical use case of robotics technology is data collection. Robots can be
used to facilitate and automate tasks like structure inspection or sample collection.
Structure inspection is vital as ageing infrastructure requires labour intensive in-
spection and maintenance operations. Robots can be used to speed the inspection
procedure allowing a more substantial portion of the infrastructure to be inspected
and providing more data on where maintenance is required. This, in turn, can
reduce the damages caused by accidents due to poor maintenance. Unfortunately,
even when all precautions are taken, accidents can still happen. In such cases,
robots can be deployed to gather data regarding the damages caused. Sample
collection is one of the ways to study the effects of such accidents and try to mit-
igate them. For example, in cases involving chemical pollution or environmental
degradation, information is required regarding the extent of the problem, as well
as, its evolution. Collecting samples is one of the main ways to obtain information
that can lead to effective measures against the phenomenon.

For most of these tasks, the robots will have to operate in a dynamic outdoors
environment. The world around the robots changes and this can have an impact
on the task execution. For example, in the underwater domain, a highly tidal

1



Chapter 1. Introduction 2

environment can develop strong currents that can affect the mission execution
energy and time [4]. The robots must be able to cope with these changes and
optimise their task execution online so that the mission efficiency is maximised.

A way to further improve the performance for such tasks is to introduce multi-
ple robots solving the given problem. Having a robotic team performing a mission
can have multiple benefits. One straightforward benefit is the parallelisation of
tasks that can be achieved. For example, when a mission requires multiple points
of interest to be inspected, each robot can inspect some of them. In the case of
sampling, multiple robots can be used to collect samples from one or more ar-
eas. This can lead to faster mission execution times. An extra benefit is that
the mission becomes robust to failures. Having one robot performing the mission
can compromise the mission success in case the robot fails. With multiple robots,
robot failures can be tolerated as other members of the team can still accomplish
the tasks, with an expected penalty in time.

When robots collaborate in teams one issue that arises is the one of team
coordination. To coordinate the robots must decide which tasks will be completed
by which robot. This problem is referred to as the Multi-Robot Task Allocation
(MRTA) problem [5]. One issue that is mentioned in [6] is that many of the
MRTA approaches are heavily reliant on communication among the robot team.
However, communication during field operations can be a scarce resource. For
example, when operating teams of underwater robots, acoustic communications
are the most popular choice. This type of communications is known to be lossy,
low bandwidth and high latency [7]–[9].

This work focuses on missions where teams of robots have to achieve inspection
or sampling tasks. In inspection tasks, the team has to visit various points of
interest to collect data regarding a structure. In sampling tasks, the team has to
collect samples from one or more regions in an area for estimating a phenomenon.
These tasks can be present in any domain, be it land, air or sea. As an application
scenario in the scope of this work, the underwater domain will be used. This choice
is motivated by the fact that the underwater environment poses all the limitations
that are already mentioned.



Chapter 1. Introduction 3

1.1 Research objectives

This work aims at expanding the field of multi-robot systems by introducing meth-
ods for optimising multi-robot mission execution in the presence of uncertainties
and constraints in communication, as well as the available budget of the mis-
sion (i.e. available energy, time etc.). The goal is to provide solutions that can
be applied online and that they can be robust to the aforementioned conditions.
Specifically, this work addresses the following questions:

• How to address the multi-robot task allocation problem under communica-
tion constraints?

• How to optimise mission performance for sampling tasks under budget con-
straints in an online manner?

These questions are relevant to the limitations mentioned in the literature.
Firstly, the MRTA problem can be heavily reliant on communication [6]. Secondly,
the state of the art solution methods for sampling under budget constraints are
computationally expensive and cannot be applied in an online manner [10], [11].
This work is an attempt to address both problems, as well as a combination of
them that allows the solution of the multi-area sampling problem under budget
constraints.

1.2 Methodology

This work focuses on providing solutions for the MRTA and online optimisation of
mission performance under communication and budget constraints. Initially, the
framework for exchanging semantic information over lossy and latent communica-
tion links presented in Maurelli and Saigol in 2012 [12] was studied. It was then
extended with relevant semantic information to accommodate solutions to the
MRTA problem. Subsequently, the MRTA problem was formulated as a Mixed In-
teger Linear Problem (MILP) and was solved using a commercial solver [13]. The
setup was interfaced with actual land robots so that the MRTA could be tested in
more realistic conditions. The communication latency and errors were simulated
using a communications simulator developed by the Ocean Systems Laboratory.



Chapter 1. Introduction 4

Experiments were performed, and they validated the correctness of the MRTA
approach.

The next phase of work addressed the problem of sampling mission optimi-
sation under budget constraints. The first step was to implement and test in
simulation the approach proposed in the work of Yu and Rus [10], [11]. The re-
sults showed that the method was not able to be applied online. The next step was
to develop a heuristic method that would allow online application. This method
was initially developed for a single vehicle. It was tested in simulation and found
to perform near optimally, but requiring much less computational effort. It was
then extended to allow multi-vehicle teams and its correctness was validated in
simulation.

Finally, the two methods were merged to provide a novel method for long
range, multi-vehicle sampling missions under budget constraints. In that prob-
lem, multiple areas had to be visited to be sampled. The problem was solved in
two levels. The first level was solving an MRTA for assigning areas to vehicles,
while the second level was run on each vehicle solving a single vehicle sampling
optimisation for each assigned area. This method was compared with the multi-
vehicle method that was previously developed in simulation. It was shown that it
can perform better and required even less computational resources.

1.3 Contributions

In the scope of this work the following contributions were made:

1. A system for optimal multi-robot task allocation that works over a latent
and lossy communications network.

2. A near optimal online heuristic for optimising sample collection missions
under budget constraints that are performed by one or more vehicles.

3. A method for optimising multi-area sensing missions under budget con-
straints for teams of vehicles.

In general, the results collected through this work showed that the proposed
methods allow running near optimal missions even under communication con-
straints. An overview of the proposed system architecture for a single vehicle can



Chapter 1. Introduction 5

Figure 1.1. The system architecture for a single vehicle performing a multi-
area sampling mission. Colour coding is used to denote newly developed parts
or parts that were modified in the scope of this work.

be seen in figure 1.1. Colours are used to denote newly developed parts, as well
as, parts required modifications in the scope of this work. In parentheses are the
chapters describing or using the respective modules.

1.4 Structure

The rest of the work is organised as follows. Chapter 2 formally defines the
studied problems. Chapter 3 presents a detailed literature review of the MRTA
and sampling optimisation problems. In chapter 4 the system architecture is
presented. Details are provided regarding the software architecture that allows
communication among the team members and its integration with the real robots.

Chapter 5 presents the MILP formulation of the MRTA problem and the in-
spection mission that is used to evaluate it. Finally, it presents and discusses the
results collected.

In chapter 6 the sensing mission optimisation is presented. It includes details



Chapter 1. Introduction 6

regarding the optimal solution methods for single and multiple vehicles operating
under budget constraints. Moreover, the heuristic methods for one and multiple
vehicles are presented in detail. Finally, results regarding the sensing mission
optimisation under budget constraints are presented. A tuning method used to
tune the heuristic parameters is provided, and the results regarding the single and
multi-vehicle simulated experiments are discussed.

Chapter 7 presents the 2-level optimisation method for long-range sampling
missions under budget constraints performed by multiple vehicles. Initially, it gives
details on how the method is implemented. Then it describes the experimental
setup emphasising on a method to generate random missions in order to evaluate
the approach. It then provides the experimental results and discusses the findings.

Finally, chapter 8 summarises the contributions of this work. It discusses any
limitations and provides future research directions that would allow the evolution
of the methods to solve a wider area of problems.



Chapter 2

Problem definition

As briefly mentioned in the previous chapter, this thesis studies the optimisation
of the behaviour and performance of teams of robots with an application to under-
water vehicles. This chapter will present the theoretical background of the main
problems studied by this work. Specifically, section 2.1 will present the Multi-
Robot Task Allocation (MRTA) problem with an example, while section 2.2 will
detail the sample collection problem.

2.1 The Multi-Robot Task Allocation (MRTA)
problem

One of the fundamental questions faced by the designers of systems composed
by more than one robot is "Which robot should execute which task in order to
cooperatively achieve the global goal?" [5].

In multi-robot systems literature, there are two different approaches to achieve
coordination. In the first approach, the coordination is achieved in an emergent
way through the interaction of the team members with each other and the en-
vironment but without an explicit decision on task allocation. An example of
this paradigm is the swarm robotics and their applications as seen in [14]. In the
second approach, the team cooperates explicitly, deciding about the tasks that
should be completed by each member, thus showing an intentional coordination
behaviour [15].

In the scope of this work the latter approach is studied. In that approach a
method to decide which tasks are executed by which robot is required. Specifically,

7



Chapter 2. Problem definition 8

given a team of n robots R = r1, r2, . . . , rn, a set of m tasks T = t1, t2, . . . , tm and
a set n×m of robots’ utilities U = u1,1, . . . , u1,m, u2,1 . . . , un,m, the multi-robot task
allocation (MRTA) problem can be described as the optimal allocation A of the
set of tasks T to a subset of robots R ′ ⊆ R such as:

A : T → R ′ (2.1)

The following sections 2.1.1 and 2.1.2 will present in detail the concepts of
tasks and utilities. In addition, a formal taxonomy of MRTA problems along
with their mathematical formulations, will be presented in section 2.1.3. Finally,
section 2.1.4 will provide an example of a task allocation problem.

2.1.1 Task

Given the existence of a global goal that has to be achieved by the robot team, a
task can be defined as a sub-goal necessary for achieving the overall goal. Some
of these goals can be represented by single actions performed by a single robot,
while others can be decomposed into sub-tasks which can be allocated to different
agents.

If a task t can be represented by a set of sub-tasks σt combined by a set of
relationships ρt is a decomposable task, with (σt, ρt) being its decomposition. In
cases where there is more than one decompositions for a task t, it is said to be
multiply decomposable. According to [16] a task can be classified in one of the
following categories:

Elemental task: Elemental task is a task that cannot be decomposed. It can
also be referred to as atomic task.

Decomposable simple task: A task that can be decomposed in elemental tasks
or decomposable simple subtasks is referred to as a decomposable simple task.
A decomposable simple task or any of its decomposable simple subtasks can
be only allocated to a single agent.

Simple task: A simple task is either an elemental task or a decomposable simple
task.



Chapter 2. Problem definition 9

Compound task: If a task can be decomposed into simple tasks or compound
sub-tasks in a fixed unique way is called a compound task. Its decomposition
can be allocated to multiple agents.

Complex task: If a task can be decomposed into a set of simple, compound or
complex sub-tasks in multiple ways, is called a complex task. A complex
task’s decomposition can be allocated to multiple agents.

It should be noted that the optimal decomposition of a compound task can
be determined in advance, while an optimal decomposition of a complex task can
only be found at the time of the task allocation process. This fact makes the
problem harder to solve as there are multiple ways to solve the same problem that
need to be explored in order to find the optimal one.

Once a task is decomposed, dependencies and constraints arise among the sub-
tasks. These need to be satisfied in order to have a feasible task allocation. For
example, some tasks may be only performed by specific robots based on their
capabilities. Other constraints may require tasks to be performed in a specific
sequence or at a specific location. Such constraints may implicitly define the type
of task that is to be executed.

2.1.2 Utility

Task allocation, being an optimisation problem, tries to find a feasible assignment
of tasks to robots in a way that optimises an objective function. Such an objective
function can be described by the utility of the robots performing the tasks. In [17]
utility is described in terms of quality and cost and can be seen in (2.2).

Urt =

Qrt − Crt, if r is capable of executing t

−∞, otherwise
(2.2)

It can be seen that if a robot r can perform task t the utility Urt is equal to
the quality of the task performance Qrt minus the cost for performing the task
Crt. If the robot cannot perform the task the utility is −∞. This definition can
be generalised for groups of robots and tasks. Suppose that R represents a subset
of the robots in the team with |R| ≥ 1, and likewise T represents a subset of tasks
with |T | ≥ 1. The utility measure for a sub-team of robots and a given subset of



Chapter 2. Problem definition 10

task is defined as follows:

URT =

QRT − CRT , if R is capable of executing T

−∞, otherwise
(2.3)

In a similar way to (2.2), when a sub-team of robots R can perform a subset
of tasks T the utility is the difference between the quality QRT and cost CRT , if
not the utility is still −∞. Building on that, one can define the effective utility,
eURTrt for a robot r ∈ R and a task t ∈ T such as:

URT =
∑
r∈R

∑
t∈T

eURTrt (2.4)

If the utilities in the given problem are independent, i.e. eURTrt = Urt, equation
(2.4) becomes:

URT =
∑
r∈R

∑
t∈T

Urt (2.5)

On the other hand, if the utilities of a given problem are interrelated, i.e.
eURTrt 6= Urt, equation (2.4) becomes:

URT 6=
∑
r∈R

∑
t∈T

Urt (2.6)

An example for this a case, is when the cost of performing two tasks changes
based on the relative order of the task. The tasks can then be ordered in a way
that minimises the cost and creates a synergistic relationship between them. The
equation (2.6) then becomes:

URT >
∑
r∈R

∑
t∈T

Urt (2.7)

In other words, the effective utility eURTrt of performing task t in the context
of the task subset T is greater than performing just the task t by itself.



Chapter 2. Problem definition 11

2.1.3 Taxonomy

In addition to the task and utility definition, the work of [17] presents a taxonomy
for classifying various MRTA problems based on the level of interdependence of
agent-task utilities in a problem. It is claimed that the degree of interdependence
shows how coupled a problem is and is a strong indicator of the difficulty to solve
such a problem. Following are the four classes composing the proposed taxonomy:

No Dependencies (ND): In the first category there are task allocation prob-
lems involving simple or compound tasks which have independent agent-task
utilities. According to (2.5), the effective utility of an agent for a specific
task does not depend on any other task or agent. In such problems, the task
decomposition is not related to the task allocation problem. Additionally,
the order of performing the tasks does not affect the utility for an agent;
thus there is no scheduling optimisation.

In-schedule Dependencies (ID): This category contains all these problems of
simple or compound tasks, where the agent-task utilities have intra-schedule
dependencies. In such problems, the effective utility of a task depends on
which other tasks the agent is performing. As in the ND case, the task
decomposition is independent of the allocation. On the other hand, there
are scheduling optimisation problems, but each agent’s scheduling problem
is decoupled from the other agents’ problems.

Cross-schedule Dependencies (XD): This category extends the ID by allow-
ing agent-task utilities to have inter-schedule dependencies. This means that
the effective utility of an agent for a specific task depends on the schedule
of other agents, in addition to the agent’s schedule itself. Again, the task
decomposition is decoupled from the task allocation by allowing only simple
or compound tasks, where the decomposition is optimally determined before
the task allocation. Additionally, in this category, constraints are allowed
between the schedules of agents; thus the schedule optimisation problems
cannot be decoupled.

Complex Dependencies (CD): The last category includes all the problems in
which the agent-task utilities have inter-schedule dependencies for complex
tasks on top of potential in-schedule and cross-schedule dependencies for



Chapter 2. Problem definition 12

simple or compound tasks. In this particular case, the agent-task utility is
depending on the schedules of other agents in a specific way dictated by the
current task decomposition. As already mentioned for complex tasks, the
task decomposition must be optimised in parallel with the task allocation. In
addition, there can be constraints between the schedules of different agents,
so the schedule optimisation problem of one agent depends on the schedule
optimisation of the other agents.

In addition to the above taxonomy, a second level can be added that can
further classify the problems in more categories using the taxonomy proposed in
[5]. In that work, the classification is based on task execution properties of a
robot, task properties and task allocation properties. Specifically, a robot can be
single or multi-task depending on its ability to execute tasks in parallel. Moreover,
a task can be single robot if its successful execution requires one robot, while a
multi-robot task requires multiple robots to be successfully executed. Finally,
instantaneous assignment considers only one allocation based on the available
information, while a time-extended assignment can plan for future allocations.

2.1.4 Example

In order to help the reader understand the properties of each taxonomy as well as
its complexity, an example is presented. In this example, a problem is presented
as it evolves from one taxonomy to another with increasing complexity.

Suppose that there are two robots R1 and R2 that are tasked to collect some
resources from different locations, namely T1, T2, T3 and T4. Both robots start
from a single location, called the depot and is where resources should be stored.
In addition, each one can carry one resource. The example setting can be seen
in figure 2.1. Each resource location and the depot are vertices. Weights on the
edges connecting the depot vertex with the resources denote the cost to travel to
the respective resource location.

In this setting, each robot has to travel to a resource, load it and move back
to the depot to unload it. It can be seen that the utility of executing a task is
independent of any other task. Such kind of problems fall into the ND category.
A potential allocation can be seen in figure 2.2.

Assuming the same quality for each task the utility is merely relying on the cost.



Chapter 2. Problem definition 13

2‾√

1
9.25‾ ‾‾‾√

5‾√

Depot T3

T1

T2

T4

Figure 2.1. Example setting for a resource collection problem. Robots are
tasked to collect resources from four different locations T1 − T4 and gather
them at a depot location. The robots start and end their routes ah the depot.
Weights on edges connecting the depot with each resource denote the cost to
travel to the respective resource location.

2‾√

1
9.25‾ ‾‾‾√

5‾√

Depot T3

T1

T2

T4

Figure 2.2. Example allocation for the ND case where each robot can only
carry one resource. R1 must fetch resources from T2 and T3 travelling 8.082
units, while R2 has to travel 7.3 units from T1 and T4.



Chapter 2. Problem definition 14

2‾√

1

9.25‾ ‾‾‾√

5‾√

Depot
4.25‾ ‾‾‾√

2‾√

T3

1

4.25‾ ‾‾‾√

5‾√

T1

T2

3.25‾ ‾‾‾√

T4

(a) Fully connected graph of tasks

2‾√

1

9.25‾ ‾‾‾√

5‾√

Depot T3

4.25‾ ‾‾‾√
T1

T2

T4

2‾√

(b) MRTA solution

Figure 2.3. Example allocation for the ID case where each robot can carry
two resources. Figure 2.3a shows the fully connected graph representing the
problem, while figure 2.3b shows an optimal task allocation.

The above allocation tries to maximise the utility of each agent by minimising the
total travelled cost. The first robot will have to visit T2 and T3, while the second
one will have to visit T1 and T4. In this solution, the robots travelled 8.082 and
7.3 units respectively.

Wanting to reduce the resource collection effort, it is decided to upgrade the
robots with more storage so that they can carry two resources at a time. Instantly,
the task allocation problem becomes more complex as the effective utility of an
agent for a task depends on other tasks this agent is executing and their relative
order. This creates a problem of the ID category and a potential allocation can
be seen in figure 2.3.

In figure 2.3a one can see the fully connected undirected graph that repre-
sents the problem. Weights on the edges represent the distance that needs to be
travelled. Figure 2.3a shows an example allocation. As it can be seen the extra
storage allows the robots to reduce the distance travelled and thus increase the
gained utility. Specifically, R1 will have to travel to T3 and T4 at a cost of 4.650
units while R2 has to get the resources from T1 and T2 at a cost of 6.516 units.

In case some of the resources were of bad quality one would like to gather
information for each one before trying to collect them. This can be done by
adding a sensor to one of the robots, removing its ability to carry any resources.
In this case, the problem is transformed into an XD category problem. Since one
robot has first to sense the resource for its quality, the other robot has to wait



Chapter 2. Problem definition 15

9.25‾ ‾‾‾√

1

5‾√

Depot T3

1

4.25‾ ‾‾‾√
T1

T2

3.25‾ ‾‾‾√

T4

2‾√

Figure 2.4. Example allocation for the XD case. The first allocation (green)
visits all locations to collect data for each available resource. Then the second
robot collects resources in two phases denoted by the blue line.

before collecting it. Also, the quality of the task performed by the collecting robot
is influenced by the schedule of the other agent. An example solution can be seen
in figure 2.4.

As can be seen, there are two distinct allocations. The first one for robot R1,
denoted by the green line, visits the resource locations to collect data. The second
one for robot R2, shown by the blue line, visits resource locations and collects
resources as soon as they are evaluated by R1. It can be seen that the collection
paths are different from the one found for the ID problem in figure 2.3b, as they
depend on the sensing agent’s schedule.

Finally, to reduce the travelling of the sensing robot and the waiting time of
the fetching robot, it is decided to add a ranged quality sensor to the sensing
robot. This sensor has a limited range so that some of the resources will still have
to be visited. The sensor addition transforms the problem to a CD problem as
there are multiple decompositions for the same task. An example allocation can
be seen in figure 2.5.

The first robot has to physically visit T3 and T2 to collect data regarding
resource quality. While on T3 it can collect ranged measurements from T1 and T4.
Robot R2 can proceed collecting the resources faster as it does not have to wait
for R1 to go to every resource.



Chapter 2. Problem definition 16

9.25‾ ‾‾‾√

1

5‾√

Depot
4.25‾ ‾‾‾√

2‾√

T3

1

4.25‾ ‾‾‾√
T1

T2

3.25‾ ‾‾‾√

T4

2‾√

Figure 2.5. Example allocation for the CD case. In this allocation a decom-
position where the sensing robot physically visits T3 and T2, while collecting
ranged measurements from T1 and T4 is chosen.

2.2 The sample collection problem

The second problem studied by this work is the one of sample collection. In this
problem, a robot, or a team of robots, has to collect samples from a predefined
area so that a physical phenomenon can be studied. For example, phenomena
like algal blooms, oil spills and chemical pollution need to be monitored and their
extent to be monitored. All these types of sensing missions can be modelled as a
scalar field that needs to be estimated [18].

A method to model and estimate such a field is presented in [19]. It is pro-
posed to model the field in a probabilistic way using a Gaussian process (GP)
based approach. To achieve that a grid of sampling points is used to approximate
the field. The field values then can be modelled as a multivariate Gaussian dis-
tribution, where one dimension is used for each sampling point. The covariance
of the distribution is calculated using a kernel function. One popular choice for a
kernel is the square exponential kernel shown in (2.8).

k(xi, xj) = exp(−
‖xi − xj‖

2l2
) (2.8)



Chapter 2. Problem definition 17

The kernel is used to model the drop in the correlation of the value of two
points based on their distance. The parameter l governs that behaviour and can
be estimated from previously gathered data. In general, the distance that two
points can be correlated is longer, when l grows larger.

Given the above formulation, one can observe that the accuracy of the field
estimation is dependent on the number of samples that are gathered. With more
sampling points a better estimation can be achieved. Unfortunately, operating
in the real environment, robots have to cope with its dynamic nature and many
constraints it may impose on the mission execution. In addition, robots may have
limitations in the sampling capacity, meaning that only a small number of samples
may be collected. Given the limitations, it can be seen that the problem can be
formulated as an optimisation problem that tries to maximise the information
gathered by the sampling process.

In detail, let S = s1, s2, . . . , sn be a set of sampling points over an area of
interest, V is a set of vehicles that can collect samples having |V | ≥ 1, and R =

r1, r2, . . . , rn a set of rewards for collecting samples. The optimisation problem is
finding a subset S ′ ⊆ S of samples that maximise the reward accumulations while
being able to be visited by the vehicles V given any constraints.

Revisiting the utility theory presented in the previous sections one can repre-
sent the utility of collecting one sample ui to be equal with the reward ri minus
the cost of collecting that sample ci. As a cost one can use the distance that needs
to be travelled to reach the sampling point. Given the spatial distribution of the
sampling points, the order of visit affects the cost of sampling. It can be seen that
the utilities are interrelated forming a scheduling optimisation problem.

2.2.1 Example

An example for the sampling problem can be seen in figure 2.6. The area to be
sampled consists of 9 vertices being in the centre of figure 2.6a. The vehicle has to
start its sampling mission from the lowest vertex and finish at the topmost vertex.
The edges represent the distance required to travel between vertices.



Chapter 2. Problem definition 18

(a) Fully connected graph
for the sampling problem.

(b) A candidate solution for
the sampling problem.

(c) Another candidate solu-
tion for the problem.

Figure 2.6. A sampling problem of a 3-by-3 area along with two solutions.
The robot has to start from the bottom vertex and finish at the top ver-
tex. It must visit as many vertices as possible without violating the budget
constraints.

In this example, the resource that is constrained is the allowed travelled dis-
tance. If the maximum allowed budget is set to 6 units solutions such as the
ones shown in figures 2.6b and 2.6c can be found. It should be noted that these
solutions are equivalent, as the amount of visited vertices is the same.

2.3 Summary

This chapter presented the theoretical background for the problems studied in
the scope of this work. Specifically, it presented the Multi-Robot Task Allocation
(MRTA) problem, along with a taxonomy from the literature based on the proper-
ties of the tasks to be allocated. A comprehensive example of an MRTA problem
evolving from one taxonomy class to another was detailed.

Moreover, the sample collection problem was presented. A formulation for
estimating a scalar filed based on Gaussian processes was detailed, and the con-
straints of a sampling mission were presented. Finally, an example of a sampling



Chapter 2. Problem definition 19

mission, along with potential solutions was given. The next chapter will provide
a detailed literature review on both problems.



Chapter 3

Literature review

The previous chapter presented the theoretical background regarding the MRTA
and sample collection problems. This chapter will present relevant solution meth-
ods from the literature. Section 3.1 will present approaches to address all different
classes of MRTA problems, while section 3.2 will detail the previous work regarding
the sampling problem.

3.1 MRTA problem literature

As mentioned in the previous chapter an MRTA problem is classified into four
distinctive classes based on the level of interdependence of the task utilities and
the task decomposition. Over the years, mathematical models, as well as solution
methods for the problems have been presented in the literature. This section aims
at thoroughly presenting them in the following sections.

3.1.1 No Dependencies

The first category represents tasks whose effective utility for an agent is not de-
pending on any other agent or task. According to the work of [5], a mathematical
formulation for this category of problems can be found in the combinatorial opti-
misation literature and specifically to the linear assignment problem presented in
[20]. Linear assignment problems can be solved in polynomial time using the Hun-
garian algorithm presented in [21]. One of the first MRTA approaches addressing
the ND problem is presented in [22]. In this work, the multi-robot exploration
and mapping problem is addressed. Task allocation is performed using a cen-

20



Chapter 3. Literature review 21

tralised auction scheme. A distributed auction system for MRTA is presented in
[23]. The presented system, called MURDOCH, uses auctions to coordinate het-
erogeneous teams of robots performing various tasks. It is tested in both loosely
coupled and highly coupled tasks. In the first category, tasks can be performed
by a single robot, such as object-tracking or sentry duty. In the second category,
a box-pushing task is used, that required two robots to push a box. A different
method is used in the work of [24], where potential fields are used. There, the
role assignment problem in a robot football scenario is studied. In this approach,
the assignment problem is continuously solved at a given frequency. This allows
robots to change roles dynamically based on the evolution of the game.

3.1.2 In-schedule Dependencies

The ID category includes tasks that their effective utility is influenced by other
tasks in an agents schedule. Formulations for these kinds of problems can also
be found in the combinatorial optimisation literature. A first formulation is pre-
sented in [25], [26] which describe the generalised assignment problem. Another
formulation is addressing the machine scheduling problem as presented in [27].
Formulations addressing various flavours of the Vehicle Routing Problem (VRP)
appear in [28], while the multi-Traveling Salesman Problem m-TSP is studied in
[29]. A common characteristic of all these problems is that they are all NP-hard.
That makes them much harder to solve than the problems in the ND category.

The ID category has been extensively studied in the MRTA literature. One
of the first approaches presented the GRAMMPS mission planner in [30]. In this
work, the mission is defined as TSP and m-TSP components, and the task alloca-
tion is performed using a mixture of exhaustive and randomised search. Another
work that uses a mixed-integer formulation to address the MRTA is presented
in [31]. The presented formulation is close to the one for the m-TSP. To solve
the problem, an auction-based method is used that performs repeated single-item
auctions that allocate targets to agents.

Auction-based task allocation methods are extensively used to solve MRTA
problems. They are well suited to robot teams as the allocation procedure can
be performed in a distributed way. One of the pioneering approaches is the work
of Diaz [32], where an auction-based approach, named TraderBots, is used for



Chapter 3. Literature review 22

coordinating a multi-robot team. In this approach, agents use auctions for task
allocations by placing bids on tasks. Each agent has only local information re-
garding his schedule of tasks that is committed to perform. To provide good
solutions, the system allows periodical reauctioning of already allocated tasks.
This helps to escape local minima by allowing better schedules to be planned for
each agent. The application presented requires a team of robots to travel to spe-
cific locations and collect sensor information. This problem can be formulated by
the multi-depot m-TSP. In the presented case agents formulate bids by using the
cost increase occurred by inserting the new task into their schedule plus a percent-
age of their profit expectations for executing the task. In general, the presented
results provided reasonable solutions, but without any guarantees on optimality.

Another auction-based method is presented in [33]. The problem solved was
an exploration task where robots have to visit some predefined points in the en-
vironment. Task allocation is performed using combinatorial auctions. In such
auctions, bundles of tasks are offered instead of single tasks. The agents then bid
on these bundles given their total profit minus the total cost.

A combination of the previous two methods is presented in [34]. That work
aims at reducing the complexity of determining the winner for an auction com-
pared to [33]. It is achieved through sequential bundle-bid single-sale auctions. In
these auctions, agents select and bid in bundles of various sizes, up to a specified
size k. The robot acting as an auctioneer is then allocating k additional tasks to
the agents. This process is repeated until all tasks are allocated.

A theoretical analysis of auction-based methods for multi-robot routing is pro-
vided in [35]. The performance of the auction-based methods is evaluated using
three different objective functions. The first tries to minimise the sum of the cost
of the robot paths (MINISUM), the second minimises the maximum path cost
(MINIMAX), while finally, the third minimises the average path cost (MINIAVE).
In addition to the objective functions, appropriate bidding rules are provided for
each one of them. Finally, approximate bounds on the performance of the auction
based methods are provided.



Chapter 3. Literature review 23

3.1.3 Cross-schedule Dependencies

The XD category addresses problems in which the effective utility of an agent
performing a task depends on the schedule of that agent, as well as on the schedules
of other agents in the system. This behaviour can be observed on two different
occasions. In the first occasion, there are single agent tasks that can be allocated
to different agents but are related by some constraint. Example of constraints can
be precedence, i.e. when one task must be completed before the other can start,
and proximity, i.e. when two tasks must be performed at a specific distance from
each other. In the second occasion, tasks require more than one agent in order to
be completed. Each of those tasks needs to be allocated to a specific subset of the
available agents. Such a problem is referred to in the literature as the coalition
formation problem. It can be seen that in the XD category the agents cannot
optimise their schedules without coordinating with the rest of the team. On the
contrary, the ID category allows each agent to optimise its schedule independently.

Problems with single-agent tasks having cross-schedule dependencies can be
modelled using a generalisation of the assignment problem by introducing ad-
ditional constraints as proposed in [36]. For the specific case where precedence
constraints exist, the combinatorial optimisation literature proposes models for
solving machine scheduling problems [27] or vehicle routing problem [37]–[39].
VRPs are of particular interest to the field of robotics as these models incorporate
travelling times and costs that are directly applicable to mobile robotic applica-
tions.

In the MRTA literature, there are some approaches that address the single-
agent task with cross-schedule dependencies problem. An initial approach is pre-
sented in [40], where the M+ system addresses the task allocation problem using a
market-based approach based on iterated instantaneous assignment. Precedence
constraints are satisfied by permitting negotiations only on tasks that have all
their preconditions met. Another market-based approach is presented in [41]. In
that approach, multiple tasks that have constraints between them are auctioned
simultaneously. The bidding agents submit bids that are expressed as functions of
constrained variables. A cost minimisation algorithm is used to perform the task
allocation. This algorithm decides which agent is going to perform the task, as well
as the value of the constrained variables. This method satisfies precedence con-



Chapter 3. Literature review 24

straints between tasks but cannot perform time extended allocation. This means
that each agent is awarded only one task that needs to be executed and a schedule
cannot be formed for each agent.

The work of Chien et al. [42] presents three different approaches for addressing
the MRTA in a distributed geological science scenario. In this scenario, there
are resource constraints for each robot, as well as constraints imposed by shared
resources. All three approaches are based on the ASPEN planner. In the first
approach uses the centralised ASPEN planner to compute a schedule for the whole
team. The planner uses various heuristics to create the schedule; for example, it
uses heuristics from the m-TSP literature combined with iterative plan repair
algorithms. The second approach divides the shared resources equally among the
members of the team and allocates goals to them. Each member then uses the
ASPEN planner to create a schedule in a decentralised way. The final approach
uses an auction-based method where each of the robots uses the ASPEN planner
to calculate its bid for each task.

The method proposed in [43] allows time-based ordering of pairs tasks between
two robots. If first auctions a task to a robot, which is designated as the "master".
The "master" then determines the start time for that task. This time is then used
to determine the start time of the dependent task which is auctioned to a "slave"
robot. This "master"-"slave" relationship is preserved throughout the execution of
both tasks. The pair maintains communication to transmit necessary information
regarding dynamic changes to the environment that may affect the plan. Such
changes can cause the tasks to be rescheduled or reauctioned to other robots.

The problem of coordinating a team of robots while maintaining connectivity
is studied in the work of [44]. In such a scenario the robots have limited communi-
cation range. This communication constraint is creating dependencies among the
schedules of all the robots. Several task allocation methods are proposed, includ-
ing a greedy and an auction-based one. Connectivity among robots is maintained
using a specific navigation mechanism.

The second type of cross-schedule dependencies involves tasks that require
multiple robots for their successful execution. Finding which subset of robots
should perform a task can be modelled as a coalition formation problem. In
the combinatorial optimisation literature, the coalition formation problem can be
modelled as the set-partitioning problem or as the set-covering problem [45]. In



Chapter 3. Literature review 25

the first case, the robots can execute only one task at a time and therefore be part
of a single coalition at any given time. The second case refers to robots that can
execute more than one tasks simultaneously and can be part of multiple coalitions
at the same time.

In some cases, multiple multi-robot tasks exist that require scheduling. This
problem is addressed in the work of [46], where a mixed-integer programming
formulation is presented for the Coalition Formation with Spatial and Temporal
Constraints Problem (CFSTP). The authors also present anytime heuristics for a
fast solution to the problem.

The coalition formation problem has been studied extensively in the MRTA
literature. A particular example can be found in the work of Shehory and Kraus
[47] where an approach to address the MRTA for single and multi-agent tasks is
presented. The presented scenario requires goods of different sizes and weights to
be transported by a team of agents. Some of the goods are small enough to allow
a single agent to transport them, while the size or weight of others requires more
than one agent. For the successful execution of all the tasks agents are required to
form coalitions. To solve this problem, it is proposed to use a greedy, distributed,
anytime set-partitioning algorithm. Each formed coalition has a set of available
capabilities that should match the set of required capabilities of a given task. The
utility of the coalition performing a task is the sum of the individual utilities of
the agents performing the task. The proposed algorithm has two stages. In the
first stage, the agents compute the coalition values in a distributed way. In the
second stage, coalitions are matched with tasks iteratively. An extension of this
work is presented in [48] where a distributed set-covering algorithm is used to solve
the problem where agents can be part of more than one coalitions. In addition,
the proposed approach allows tasks with precedence constraints by computing
coalitions for all the prerequisite tasks of a given task.

The approach of [47] and [48] is designed with abstract agents in mind. This is
reflected in the design requiring lots of communication and not considering which
capabilities should appear in the configuration of a single agent when considering
it for a coalition. Such properties make the adoption of that approach in the
robotics domain hard. The work presented in [49] addresses the aforementioned
issues by adapting the approach of Shehory and Kraus. Moreover, it introduces
additional constraints to discourage the formation of imbalanced coalitions.



Chapter 3. Literature review 26

An auction-based approach to the coalition formation problem is presented in
[50]. In this approach when a robot discovers a task becomes the task owner and
creates an auction trying to recruit other robots to form a coalition. Another
auction-based approach is presented in [51] where combinatorial bids are used for
coalition formation. The approach uses capability vectors to model task require-
ments and agent capabilities. Each task has a "manager" that creates an auction.
Each of the other agents bid on the task using their capability vectors. The man-
aging robot selects a subset of robots that satisfy the capability requirements of
the task and informs them with a "task pre-award message". The subset of agents
then coordinates and creates a "bidding combination" that is transmitted to the
task manager. The task is then awarded to the formed coalition.

A more comprehensive approach to the multi-task robots is presented in [52].
In the described problem there are single and multi-robot tasks, and the robots
can perform multiple tasks in parallel limited by their local resources. Examples
of resources are the robot’s communication link, the processor capacity and the
robot’s position. A robot can complete a task using its local resources or resources
of other robots. Coalition formation happens by requesting data or resources to
complete a specific task. To solve the problem, single-round auctions are used.
Each auction has two stages. The first stage forms potential coalitions by request-
ing resources from the team. The second stage determines the best coalition and
awards the task.

The time-extended coalition formation for single-task robots is studied in
[53]. The coordination problem is modelled as a constraint optimisation prob-
lem formulated as a mixed-integer linear program (MILP). The proposed solu-
tion, named Constraint Optimisation Coordination Architecture (COCoA), has a
heuristic method that produces an initial solution. This solution is then given to
a commercial linear programming solver for further optimisation.

Another work using MILP formulations to address the time-extended coalition
formation is presented in [54]. This work also focuses on single-task agents and
a task may require multiple agents to be able to be completed. The problem can
have various temporal and location constraints. Examples are task precedence,
synchronisation, task proximity and location capacity constraints. To model the
problem a set-partitioning MILP formulation is used. A proposed planner, named
xTeam, provides the solution to the problem. This planner utilises a custom



Chapter 3. Literature review 27

branch-and-price algorithm [55] to solve the given coordination problem.

3.1.4 Complex Dependencies

The final category of problems is involving complex tasks. Such tasks have multiple
potential decompositions, of which at least one can be allocated to multiple agents.
In such a problem one must decide not only which robots should perform each task
and when, but also which decomposition should be used. In the MRTA literature,
only a few approaches address the CD class.

The work presented in [56] addresses time-extended MRTA problems with
intra-path constraints. An example application is a disaster-response scenario as-
signing fire sources to fire-fighting robots. The robots can reach the fire sources
using more than one routes. Some of these routes are blocked by debris which can
be cleared using bulldozer-type robots. To calculate the cost of a route depends
on whether it will be clean of debris. This creates complex dependencies as mul-
tiple allocations must be decided simultaneously. Specifically, it must be decided,
which fire-fighting robots will be allocated to which fire, which routes they will
take and which bulldozer-type robots will be assigned to clear which debris along
those routes. To solve this problem, the authors propose two different methods.
The first method uses an auction-based approach along with task clustering and
opportunistic path planning. This approach performs a search in the space of
possible time-extended schedules and allocations. The second method is based on
a genetic algorithm trying to find a valid plan.

The work presented in [57] proposes a solution method for complex problems
with tasks requiring multiple robots. This method is based on schemas which are
structures having input and output ports, local variables and a behaviour. To
construct a solution, this method is dynamically connecting a network of schemas
that are on the robots of the team. The connection of various schemas given their
input and output ports can produce a behaviour that solves the given problem. It
can be seen that connecting different schemas in different ways can produce mul-
tiple decompositions for solving a specific task. The proposed solution method is
called ASyMTRe and is a greedy method that performs a search over the different
schema configurations trying to find a solution. The authors also provide a dis-
tributed version called ASyMTRe-D where each robot decides what information



Chapter 3. Literature review 28

is needed and requests it from other members of the team.
An auction-based approach for solving time-extended task allocation problems

of complex tasks is presented in [16]. This work extends the work presented in [32]
by trading task trees instead of simple tasks. Each task tree represents a potential
decomposition for a given task. During an auction, robots are allowed to change
the decomposition of the task they are biding for. It is also allowed to bid only
for parts of a tree, thus allowing the formation of coalitions. After all the robots
place a bid, the auctioneer selects those bids that satisfy the task requirements
and have the lowest cost for the whole team. These robots are then awarded the
task.

3.2 Sampling problem literature

As described in the previous chapter the sampling problem can be formulated as an
optimisation problem. In this problem, one wants to maximise the utility gathered
by an agent, or a team of agents, while respecting some resource constraint. The
following sections will present formulations from the combinatorial optimisation
literature as well as heuristic solutions for the problem.

3.2.1 The orienteering problem

In the combinatorial optimisation literature, there are various approaches to ad-
dress this problem. The first work to address this problem is presented in [58].
In this work, a heuristic optimisation method is applied to the game of orienteer-
ing. In this game, there are various control points, each one having a score, and
a limited amount of time. Each contestant has to maximise its score by visit-
ing the control points given the time limitation. The term Orienteering Problem
(OP) widely used in the literature was first coined in the work of [59]. This work
provides a heuristic solution method that improves the results of [58]. The first
work presenting an exact method for solving the OP is shown in [60]. There, an
ILP formulation is presented, along with upper and lower bounds and an exact
enumerative algorithm. Another exact solution is presented in [61]. This work
expands the work of [60] by adding valid inequalities to the problem definition.
The optimal solution is found using a branch-and-cut method. Applications of



Chapter 3. Literature review 29

the problem to transportation and logistics systems are presented in the review
papers of [62], [63].

Since the OP is an NP-hard problem, an exact solution can be difficult to find.
For that multiple heuristic methods have been proposed in the literature. In [64]
a five-step heuristic is presented. This heuristic initially constructs several paths
using greedy initialisation. Then it iteratively performs operations of two-point
exchange between paths, one-point move from path to path, 2-opt optimisation
and reinitialisation of the best-found path by removing the lowest-performing con-
trol points, or vertices, of the path. Their approach performed better than the
state of the art in multiple cases.

The work presented in [65] uses a Tabu Search (TS) heuristic to find near-
optimal solutions for the Selective Travelling Salesman Problem (STSP). The
STSP is a version of the OP where a maximal profit Hamiltonian cycle is searched
over a subset of the vertices. In general, the OP searches of a Hamiltonian path
since starting and ending positions may be different. Their proposed heuristic
manages to provide results that are close to optimal for the used test cases.

The work of Liang et al. [66] presents two heuristics for the OP. The first
heuristic is based on Ant-Colony optimisation (ACO) where virtual ants construct
paths using trails of pheromone. The second presented heuristic is based on TS.
The proposed methods are compared against a genetic algorithm approach [67]
and the heuristic of [64]. The performance of both presented methods is on-par
with the state of the art in solution quality. In terms of computational needs, they
were both much faster than the genetic algorithm. Compared to the heuristic of
[64] the TS heuristic performed comparably, while the ACO algorithm was two
times slower on average. Nevertheless, the ACO method proved to be more stable
having a lower standard deviation in the results than the TS heuristic.

Another work presenting two different heuristic methods is presented in [68].
In this case, it is used to provide solutions to a multi-objective orienteering prob-
lem. The application presented is one of planning individual tourist routes in a
city based on the preferences of the tourist. For example, some tourists prefer
cultural points, while others have a higher preference for shopping. Therefore a
multi-objective approach is required. The first presented method is using ACO
optimisation, while the second is using a Variable Neighbourhood Search (VNS)
approach. The proposed approaches are tested on benchmark instances and in



Chapter 3. Literature review 30

real-world applications. Regarding their single-objective performance, they are
compared with approaches from the literature and perform equally or better. For
the multi-objective case, the ACO based approach usually performs better than
the VNS approach.

One of the first Genetic Algorithm (GA) approaches for the OP is presented in
[67]. In this approach, an adaptive penalty function is used that allows considering
infeasible solutions as solution candidates. It is compared against the results of
[64] and an artificial neural network optimiser. It manages to produce better
results than the state of the art in four instances.

In the work presented in [69] a GA is used to solve the Generalised Orienteering
Problem (GOP). In the GOP each of the vertices has a score based on multiple
attributes, and the objective function of the problem is non-linear. It uses an
elitist GA that solutions do not degrade during the optimisation process. The
application is again one for tourist planning. Specifically, tours are found through
27 cities in China, where each city’s score is based on four metrics, namely natural
beauty, historical significance, cultural and educational attractions, and business
opportunities. The proposed approach is compared to an artificial neural network
specifically designed to tackle this problem. Both approaches perform comparably
in terms of tour quality, but the GA is much faster. To solve

To solve the OP in large instances, a GA is proposed in the work of Karbowska
et al. [70]. Their approach evaluates each solution based not only on the collected
rewards for visiting vertices but also based on the total cost of the solution. The
presented approach is compared against a Guided Local Search (GLS) method and
another GA approach. It manages to outperform the other methods both in terms
of profit and in terms of computational time.

A method that found improved or, at least, equally good solutions to the state
of the art is presented in [71]. The proposed approach is based on a discrete
strengthened particle swarm optimisation method. This method provides higher
robustness as the quality of the found solutions shows low variance. It is compared
against multiple different heuristic approaches from the literature and finds at least
same quality paths as the state of the art. In terms of computational complexity,
it is on lower than methods providing equal solution quality.

The work presented in [72] uses a Greedy Randomised Adaptive Search Pro-
cedure (GRASP) with Path Relinking (PR). The authors present four different



Chapter 3. Literature review 31

methods based on GRASP to generate a population of solutions. These solutions
are then improved using PR between them. The proposed approach is compared
against heuristics in standard problems from the literature and shows compara-
ble performance in terms of score requiring a fraction of the computation time.
Another GRASP based method for the OP appears in [73]. There the GRASP
method is used to construct a population of solutions that are then improved us-
ing local search methods and an evolutionary algorithm. The proposed approach
manages to find the solutions that match the best solutions found in the literature.

3.2.2 The team orienteering problem

An extended version of the OP for multiple agents is presented in [74]. The
problem is named Team Orienteering Problem (TOP) and consists of multiple
agents starting from a single place trying to collect the maximum reward using a
limited budget. Only one agent may visit each vertex providing a reward. It can
be seen that the standard OP can be considered a special case of the TOP. The
work presented in [74] provides a heuristic approach for the TOP that is similar
to the one presented in [64].

Given that the TOP is at least as hard to solve as the OP, heuristic approaches
are the main solution methods found in the literature. The work presented in
[75] uses a Tabu search heuristic to address the team orienteering problem. The
proposed heuristic is embedded in an adaptive memory procedure which switches
between small and large neighbourhood stages while improving the solution. Their
approach uses both random and greedy methods for generating neighbourhood
solutions. In addition, both feasible and infeasible solutions are explored. The
proposed approach finds new better solutions for many of the benchmark instances
in the literature while having smaller computational requirements.

A local search method for solving the TOP is presented in [76]. An algorithm
combining various local search heuristics is presented. The use of Guided Local
Search (GLS) is used to improve two of the presented heuristics. Extra heuristics
are used to force the method to explore larger portions of the solution space. The
proposed approach is compared with state of the art heuristics from the literature,
and the results are of the same quality. In addition, the approach requires less
computational time.



Chapter 3. Literature review 32

The work of Vansteenwegen et al. [77] uses iterated local search for solving the
Team Orienteering Problem with Time Windows (TOPTW). In such a problem
each location has not only a score but also a service time and a time window.
The goal of this problem is to form maximising routes that visit a subset of the
locations at the right time while respecting the given budget constraints. An
example application is a personalised tourist guide that respects opening and
closing times of attractions. The proposed approach is using insert operations
combined with a shake operation that allows escaping local optima. Compared
with the state of the art produces solutions with an average gap of only 1.8%,
while for 31 instances, new best solutions are computed. In addition, it is fast
enough to be applied online, as its average computation time is at least two orders
of magnitude less than the state of the art.

An ACO approach for solving the TOP is presented in [78]. The authors
present four different methods to generate candidate solutions. Specifically, se-
quential, deterministic-concurrent, random-concurrent and simultaneous methods
are used. Their proposed approach is compared using standard benchmark in-
stances from the literature finding better solutions than the state of the art in
some of them.

Another work addressing the TOPTW problem is presented in [79]. The pro-
posed solution uses a VNS approach operating on granular instead of complete
neighbourhoods. This allows for increasing the efficiency of the algorithm without
compromising its effectiveness. Compared to the state of the art it is a competi-
tive method managing to improve 25 of the best-known solutions for benchmark
instances. Another work that makes use of VNS is presented in [80] to tackle the
Capacitated TOPTW. Their results are matching the state of the art in benchmark
instances.

A simulated annealing approach is used in [81] to solve the TOPTW problem.
They provide extensive computational results where the proposed approach per-
forms on par with the state of the art. It manages to find a better solution to only
a few benchmark instances, but it required more computational time.

A path relinking approach for the TOP is presented in [82]. Two variants of
the approach are presented, namely a fast and a slow variant. They are tested
against state of the art methods in benchmark instances from the literature. The
fast variant achieves on average a 0.39% gap from the best-known solutions in



Chapter 3. Literature review 33

five seconds, while the slow variant manages to close the gap to 0.04% in 272.8

seconds. In addition, the slow variant manages to improve the best-known results
for five benchmark instances.

3.2.3 Sampling and the orienteering problem

The tasks of sampling or information gathering have been modelled as instances
of the OP in various works. In [83] a solution to the lake and river monitoring
task for resource-limited robotic teams is presented. To achieve that an efficient
Single-robot Informative Path planning (eSIP) approximation algorithm is pro-
posed. This algorithm is used to optimise a path for a single robot. A Gaussian
process is used to model the studied phenomenon. The amount of information
collected by the planned path is calculated by using the Gaussian process and
the mutual information between the visited points and the rest of the monitored
area. It is shown that the eSIP gives close to optimal results. It is shown that the
proposed approach is solving an instance of the Submodular Orienteering Problem
(SOP) [84]. In addition, the proposed approach is extended to multi-robot teams
using a sequential allocation method. The method is evaluated in field tests and
using real-world sensor data sets.

The work presented in [85] addresses the additional information gathering prob-
lem in a sensor network. They present a path planning method for maximising
mutual information. This work is an extension of [83] dealing with special cases
for underwater vehicles. Close to optimal paths are produced using a recursive
greedy algorithm. The generated paths take into account the lack of communica-
tion in underwater vehicles and the fact that the vehicles take measurements while
moving. In addition, the path is guaranteed to avoid high-traffic areas that can
pose a threat to the vehicle. The proposed approach is verified using field trials
of an underwater glider.

Given the computational complexity of solving the submodular OP, it can be
inapplicable for online usage on platforms with limited computational resources.
In the work of Heng et al. [86] a linear approximation of the submodular OP is
proposed for addressing this problem. The method is applied to a simultaneous
exploration and coverage problem performed by amicro aerial vehicle (MAV). The
proposed approach is used continuously online to plan a path for the MAV using



Chapter 3. Literature review 34

on-board limited computing resources. The algorithm aims at providing obstacle
free and feasible paths that maximise the observations of unexplored space and the
sensor coverage of the area given the sensor limitations. An example application
is the automated 3D reconstruction of environments. The proposed approach
is validated in simulation using a MAV equipped with a forward-looking depth
camera. In terms of coverage, it outperforms an exploration-only approach while
still managing to explore the entire environment.

An exact solution for the informative path planning (IPP) problem is presented
in the work of Binney et. al. [19]. A Gaussian process is used to perform scalar
field estimation. The IPP is formed as an optimisation problem that tries to
maximise the variance reduction of the Gaussian process model. The optimisation
problem is solved using a branch-and-bound method.

Another work addressing the marine sampling problem is presented in [87]. The
authors try to find better ways than a classical "lawnmower" pattern to address
the sampling problem. In this work three different methods are proposed, an
optimised "lawnmower", a graph search algorithm based on A* and a GA based
heuristic. They apply their approach to a phytoplankton monitoring mission.
Results showed that the non-linear GA is trying to collect more data from high
uncertainty areas, while the optimised "lawnmower" and the A* solving an OP
instance maximised the area coverage.

In the work of Tokekar et al. [88] an agricultural monitoring application is
presented. A multi-robot team composed by a ground vehicle and an aerial vehicle
is tasked to estimate a nitrogen map of an area. The proposed solution consists
of solving two different problems, one for each vehicle. For the ground vehicle a
sampling travelling salesperson problem with neighbourhoods (SAMPLINGTSPN)
is used for optimising the time-consuming task of collecting soil samples. For the
areal vehicle, given its limited energy, an orienteering problem instance is used to
maximise the aerial measurements. For solving the orienteering problem, a four-
approximation algorithm [89] is used. This algorithm guarantees that the result
will visit at least a quarter of the sampling points visited by an optimal approach.
The proposed approach is validated using simulations and field experiments.

Many of the sampling optimisation approaches consider Euclidean distances
between the sampling points. Unfortunately, paths generated by them are not
feasible for vehicles having kinodynamic constraints. To address that problem the



Chapter 3. Literature review 35

work presented in [90], [91] proposes a VNS approach for solving the Dubins Ori-
enteering Problem (DOP) and the Dubins Orienteering Problem with Neighbour-
hoods (DOPN). The proposed approaches successfully compute optimised paths,
but their computational cost is prohibitive for online applications.

The work of [92] addresses the informative path planning problem in an on-
line manner. The presented approach, named Randomized Anytime Orienteering
(RAOr) aims at providing near-optimal solutions with runtimes that allow online
applications. The algorithm combines a constraint satisfaction problem and a
travelling salesman problem. This way it manages to restrict the search space and
find good solutions in a reasonable amount of time. Experimental results using
simulation and real-world scenarios show that they improve the runtime by an
order of magnitude over the state of the art.

3.3 Summary

This chapter presented relevant literature regarding the MRTA and sampling un-
der constraints problems. For the MRTA multiple approaches that address vari-
ous levels of complexity are presented. Regarding the sampling problem, methods
from the combinatorial optimisation field for one or more vehicles are presented,
along with their application to the sampling problem. An in-depth description
of optimisation theory and heuristics to the optimisation problem can be found
in appendix A. The next chapter will present the system architecture used in the
scope of this thesis.



Chapter 4

System

The previous chapter presented the relevant literature for the MRTA and the
Sampling under budget constraints problems. This chapter aims at presenting the
software stack used to provide a reliable method of information sharing among the
robot team, as well as the way it was integrated with real robots for performing
real-life experiments. A general view of the architecture can be seen in figure 4.1.

Figure 4.1. The software architecture used for evaluating the MRTA ap-
proach. The world model and the exchange manager are responsible for the
reliable exchange of information among the members of the team. The mission
planner implements the MRTA and mission optimisation. It uses the world
model to access all the data required for the optimisation.

36



Chapter 4. System 37

4.1 Reliable information sharing under commu-
nication constraints

As already mentioned in chapter 1, this work aims at providing an optimal MRTA
approach that operates over latent and lossy communications. For that, an effi-
cient and fault-tolerant way to exchange information among the team members
is required. Such a method is presented in [12], where a Distributed World Model
(DWM) architecture is described. This method was developed by members of the
Ocean Systems Laboratory and was evaluated during field trials whose results are
presented in [9].

The DWM architecture is an efficient and robust method to share information
among the members of a robot team. It makes use of broadcast communications
and aims at maintaining a consistent world knowledge state among the team
members. This is achieved by the use of an ontology representation to store all
the relevant information and a Data Exchange Manager (DXM) module that is
responsible for sharing the data. These modules can be seen on the right side of
each vehicle representation in figure 4.1.

The ontological data representation used by the DWM was first presented in
the work of [93]. This work proposed the use of a temporal representation of
knowledge. It is shown that such a representation is able to model better the
evolution of information, as well as, the uncertainties of the environment that is
modelled through the world model. An example of this representation applied to
a target classification scenario can be seen in figure 4.2.

In this example, one can see the representation of a target that is discovered and
needs to be classified. When it is first discovered at time 123, it has an "Unknown"
class. After inspection and classification are performed, at time 145, the class is
updated taking the value "Rock". Likewise, one can model various aspects of
the environment and the vehicle itself, as its position, intentions, health status,
remaining energy etc. A more extensive work describing the use of ontologies in
MCM missions can be found in [94]. The ontology framework used to model all
these data is Jena developed by the Apache Foundation [95].

The second main component of the DWM is the DXM. The DXM is a software
module that is responsible for sharing information with the other robots in a
transparent manner to the rest of the software architecture. This means that the



Chapter 4. System 38

Figure 4.2. Example of temporal representation of knowledge for a target.
Initially when the target is discovered at time 123 its’ class is unknown. After
the classification process finishes at time 145 it is classified as a "Rock".

planning software does not have to take into account any communication actions
reducing the planning effort. The DXM is also tasked with receiving information
from other robots, storing it in the ontology so that other software modules can
access it, and finally acknowledging the reception. A flow chart of the DXM can
be seen in figure 4.3.

As can be seen, the DXM is continuously running as a process. It checks if
it is time to transmit any data, as the shared communication medium is accessed
using a Time-Division Multiple Access (TDMA) policy. If it is time to transmit,
it proceeds with the data selection and transmission. The data selection is based
on the information needs of each vehicle and the maximum allowed packet size.
The information needs of each vehicle are user-defined and are communicated
at the beginning of the mission. After selecting the data, they are accordingly
transmitted. On the other hand, if it is not the allowed time to transmit, the
DXM checks if there is an incoming message. If it exists, then it unpacks the data
and inserts them in the ontology. Following it arranges for the acknowledgement



Chapter 4. System 39

Figure 4.3. Execution diagram of the Data Exchange Manager. The DXM
checks if it is time to transmit. If yes it selects the appropriate data that
fit in a message based on their priority and accordingly transmits them. If
not it is checking for any incoming data. If there are any, their reception is
acknowledged.

of the message. For acknowledging messages, the DXM offers various policies that
make it robust in high error rate environments. Details for the policies can be
found in [12].

4.2 Integration on real platforms

The DWM architecture is primarily targeted to fleets of autonomous underwater
vehicles communicating using acoustic modems. For testing with real robots in
the scope of this work, additional software is written and integrated. The complete
software stack used to run these experiments can be seen in figure 4.4.

Since the scope of this work aims at latent and error-prone communications, a
communications simulator developed by the ocean systems laboratory is used. One
of the primary considerations regarding the real platforms is how to integrate this
communications simulator. The use of the simulator is imperative as it allows to
adjust the channel parameters that affect the optimal MRTA. The decided solution
is to have the higher level software of each platform run on a workstation along
with the communications simulator while leaving just the lower level software on
the onboard computer of the robots.

To achieve this physical separation a bridge is created. This bridge is responsi-
ble for transferring high-level commands, for example, navigate to point A, provide
feedback from the action execution and allow queries to the lower subsystems to
be performed. This bridge is deployed as a ROS node that is translating from



Chapter 4. System 40

Figure 4.4. Software setup for the integration of Turtlebots with the OSL
software architecture. The high-level software, as well as the communications
simulator, is running on a workstation. On each robot, the ROS navigation
stack is running providing navigation capabilities. Communication between
the high-level software and the robots was performed using a ZeroMQ based
bridge operating over WiFi.

various topics to ZeroMQ [96] publishers and subscribers. The ZeroMQ is used
as a transport layer over WiFi between the robots and the workstation. On the
workstation, the bridge node is translating high-level navigation commands and
sending them to the low-level controls, while receiving feedback on the navigation
execution. It also issues queries to the low-level path planners regarding the cost of
various paths. Equivalently, the bridge node on the robot is receiving the requests
and commands and, after consulting with the low-level ROS navigation stack, is
reporting back to the high level.

4.3 Summary

This chapter presented the software architecture used to provide a reliable method
of information sharing among the robot team. In addition, it presented the soft-
ware stack used for integrating a communications simulator with the DWM and
real robots. These developments were used to evaluate the proposed MRTA ap-
proach described in the next chapter.



Chapter 5

Multi-robot task allocation under
communication constraints

The previous chapter presented an architecture for reliably transmitting infor-
mation over channels that have high latency and errors in communication. In
addition, it presented how it is integrated with indoors robotic platforms that
facilitate the performance of experiments on real robots.

This chapter presents the proposed approach for addressing the MRTA prob-
lem under communication constraints using the aforementioned architecture. In
particular, it studies how the MRTA can be solved optimally for a robotic team
performing inspection tasks in conditions where communications are limited and
latent. In addition, it studies the effects of communication errors in the MRTA
problem solution. An example domain where communications are rather limited is
the underwater one. There, acoustic communications, implemented using acoustic
modems such as the ones presented in [97], is the primary way of communication
as electromagnetic radiation is propagating poorly in water.

In the beginning, a typical structure of an underwater inspection mission will
be presented, along with example applications. Following, the problem is analysed
and classified according to the theory presented in chapter 2. Next, the MRTA is
modelled as an optimisation problem. In addition, the data requirements of this
formulation are discussed, and their integration within the DWM architecture is
presented. Finally, the method is tested in simulation and using real robots under
various levels of communication errors. Its performance is compared with other
baseline methods, and the results are discussed.

41



Chapter 5. Multi-robot task allocation under communication constraints 42

5.1 Underwater inspection mission

Underwater inspection missions usually involve one or more vehicles trying to
locate objects of interest and collect information about them. A typical example of
such a mission is the of Mine-Countermeasures (MCM) performed autonomously.
It is one scenario that receives lots of attention in the literature. According to
[98], MCM is the phase where more effort is spent in naval countermine warfare.

A typical autonomous MCM mission consists of three phases, each one requir-
ing different capabilities [99], [100]. The first phase is called Search-Classify-Map
(SCM) and aims at mapping an area, searching for potential mine objects and
classifying them as mine-like contacts (MILCOs) or non-mine mine-like objects
(NOMBOs). For this phase, usually, a large area needs to be searched. This is
performed using a fast moving vehicle, equipped with appropriate sensors such
as side-scan-sonar (SSS), that can collect data over the required area in a fast
manner. The second phase requires the MILCOs to be revisited for the final iden-
tification as a mine and is named Reacquire-Identify (RI). Each of the MILCOs
has to be localised based on the findings of the previous phase and appropriately
inspected. For the inspection, the object must be viewed from different view-
points. The final phase is referring to the neutralisation of the mine. If a mine is
detected and identified then a vehicle is used to neutralise it. This is performed
by either placing an explosive charge next to the mine and detonating it, or by
directly guiding a disposable vehicle on the mine.

The phases of an MCM mission can be directly applied to other fields. For ex-
ample, in underwater archaeology [101], a survey of the area of interest is required
to create a map and locate potential archaeological artefacts. Then, any findings
are closely inspected and photographed so that a 3D reconstruction of the object
can be made. Examples of findings from such missions can be seen in figures 5.1
and 5.2.

During the ARROWS project, several field expeditions took part. Some re-
sults from search missions conducted autonomously using an IVER-3 vehicle are
presented here. The first set presents artefacts with archaeological significance
captured in Trapani, Sicily and Tallinn, Estonia. In figure 5.1a at the right part
one can see the load of amphoras of an ancient Roman ship found off the coast of
Trapani in Sicily. Figure 5.1b shows the foundation of the citadel and its towers



Chapter 5. Multi-robot task allocation under communication constraints 43

(a) Ancient Roman am-
phorae sitting on the bot-
tom off the coast of Tra-
pani, Sicily.

(b) Foundations of the
citadel and its towers at
the port of Tallinn, Esto-
nia.

(c) Shipwreck off the
coast of Naissaar island in
Estonia.

Figure 5.1. Side-scan sonar images of antiquities captured during trials for
the ARROWS project.

that were built to protect the harbour of Tallinn in Estonia. In this mission, the
vehicle passed directly above the structure. The image is shown in figure 5.1c
shows the shipwreck of a ship found just off the coast of the island of Naissaar in
Estonia.

(a) RUMMU-1 (b) RUMMU-2 (c) RUMMU-3

Figure 5.2. Side-scan sonar images of machinery and structures captured
during trials for the ARROWS project.

The second set of pictures was captured in lake Rummu in Estonia. The lake
was formed in the place of a limestone quarry after the activity was halted and
groundwater stopped being pumped out of it. During the flooding, several utility
buildings and machinery were left in place and can be seen. In figure 5.2a one
can see walls of structures on the left part of the image and part of a road on the
right part. The second figure, shown in 5.2b shows two pieces of machinery on



Chapter 5. Multi-robot task allocation under communication constraints 44

the right-hand side of the image. Finally, in figure 5.2c a larger area was mapped
showing structures, roads and other environmental features.

5.2 MRTA Problem

As already described before by the example inspection missions, the various phases
of the applications require different capabilities. All these capabilities can be pro-
vided by a single vehicle. This vehicle would have to be equipped with a plethora
of sensors, as well as, have enough energy and processing power to accomplish the
mission. All these factors would make the vehicle big enough to be hard to operate
without a large accompanying service ship. Additionally, this vehicle would be a
single point of failure for the mission. In case of some error on it, the mission
would not be able to be performed. Moreover, a single vehicle would require more
time to perform the whole mission, raising the cost and the required effort.

Given the discussed disadvantages, this work focuses on solving the problem
using specialised vehicles for each role. These vehicles can be simpler and smaller.
Reducing the costs for acquiring, as well as operating, since they can be deployed
by a small team using a small boat or even from the shore. In addition, a multi-
vehicle team achieves task parallelisation which reduces the mission execution
time. Furthermore, the use of multiple vehicles provides higher execution robust-
ness as single vehicles are allowed to fail and still the mission will be able to be
completed by the rest of the fleet. Following the different types of vehicles are
described.

The first role is of a fast vehicle equipped with sensors that can search and map
a large area. This vehicle will be referred to as Search Autonomous Underwater
Vehicle (SAUV). Its’ aim is to find potential targets so that they can be inspected.
One example is IVER3 of OSL equipped with a Klein 3500 side-scan sonar which
can be seen in figure 5.3. The second role will be fulfilled by a slower but hover
capable vehicle that can stay close to a target and capture data with its’ sensors
from various viewpoints. Sensors that can be used in that case include cameras
and forward-looking sonar. This type of vehicle will be addressed as Inspection
Autonomous Underwater Vehicle (IAUV). Nessie AUV developed by the OSL can
be used to fulfil that role and can be seen in figure 5.4.

The goal of the research presented here is to perform such missions in an



Chapter 5. Multi-robot task allocation under communication constraints 45

Figure 5.3. The IVER-3 AUV of the Ocean Systems Laboratory manufac-
tured by OceanServer. It is equipped with a Klein-3500 sidescan sonar. This
vehicle is not hover capable and requires to be in constant motion to be able
to be submerged. It was used to acquire the data shown in figures 5.1 and 5.2.

optimised way using a fleet of collaborating vehicles. These vehicles operate si-
multaneously, and the mission evolves in an online manner. Specifically, inspection
targets are gradually discovered and have to be inspected in an optimised way. To
achieve that the vehicles can share information and cooperate using underwater
acoustic communication. The main problem to be addressed is which the inspec-
tion candidates are visited by which vehicle. A formal definition of the problem
will be presented in the next sections.

5.2.1 Task description

As briefly described the tasks for the inspection vehicles require to collect data
from various points so that the object can be correctly classified. Given the task
description, it is easy to see that it can be decomposed into several simple tasks
each one being a data collection action from a specific point. Such simple tasks
can be allocated to different agents. Additionally, such a task can have multiple



Chapter 5. Multi-robot task allocation under communication constraints 46

Figure 5.4. The Nessie-VII AUV developed by the Ocean Systems Labora-
tory. It is hover capable and has five degrees of freedom. It is equipped with
a P900 forward-looking multibeam imaging sonar manufactured by BlueView.

decompositions depending on the kinematic capabilities of the vehicles performing
the task. Two different decompositions can be seen in figures 5.5a and 5.5b.

The first decomposition, seen in figure 5.5a, refers to a hover-capable vehicle,
equipped with a forward-looking sensor. The task is decomposed in a set of simple
tasks, presented as blue dots, that form a circular pattern around the object to be
inspected. At each task, the vehicle has to stop and capture data using its sensor.
If executed by a single vehicle, it has to move in a circular pattern through the
waypoints as shown by the path in figure 5.5a.

The second decomposition refers to a non-hover capable vehicle, equipped with
side-scan sonar sensors and can be seen in figure 5.5b. This type of vehicle re-
quires to be in constant motion in order to remain submerged. In addition its’
sensor configuration allows reliable data to be captured only when collected during
straight paths. These requirements lead to simple tasks of traversal lines around
the object of interest. For example, such a line is denoted by waypoints 0 and 1



Chapter 5. Multi-robot task allocation under communication constraints 47

−4 −2 0 2 4

X (m)

−3

−2

−1

0

1

2

3

Y
 (
m
) 0

1

2

3

4

5

6

7

Problem Solution

nodes
route #0

(a) Inspection pattern of a hovering capa-
ble vehicle, equipped with a forward look-
ing sensor.

−4 −2 0 2 4

X (m)

−3

−2

−1

0

1

2

3

Y
 (
m
)

0 1

23

4

5

6

7

8

9 10

11

12

13

14

15

Problem Solution

nodes
route #0

(b) Inspection pattern of a non-hover ca-
pable vehicle, equipped with sidescan sonar
sensors.

Figure 5.5. Inspection patterns for vehicles with different kinematics.

in figure 5.5b.
According to the task description presented in section 2.1.1 the studied inspec-

tion task can be classified as a complex task since it has multiple decompositions
based on the vehicle type. In the scope of this work, inspection is assumed to
be performed only using hover capable vehicles. In addition, an inspection of an
object must be performed by a single vehicle. Such a requirement arises from the
fact that the object needs to be classified online during the mission execution by
one of the inspection vehicles. Given the limitations in communication bandwidth
in the studied scenario, it is prohibitive to communicate sensor readings between
vehicles. These considerations allow treating the tasks to be allocated as decom-
posable simple tasks since there is a single way to decompose them and they can
be allocated to a single agent only.

5.2.2 Utility description

As discussed in section 2.1.3 each MRTA can be classified based on the agent-task
utilities. The utility for an agent performing a task is shown in (2.2). Where
the utility is defined as the difference between the quality of performing a task Q
and the cost for performing a task C. For a simple task, it can be assumed that
the quality of the task Q is the sum of the qualities of all the n simple tasks q
composing the decomposable simple task as shown in (5.1).



Chapter 5. Multi-robot task allocation under communication constraints 48

Q =
n∑

i=1

qi (5.1)

Applied to the inspection scenario, the utility for performing an inspection
can be assumed to be constant and equal to the sum of the utilities for getting
readings from various viewpoints. Regarding the cost of performing the decom-
posable simple inspection task, it can be represented by the cost of travelling to
the object that needs to be inspected plus the cost of moving around performing
the n different simple tasks as it is shown in (5.2).

C = ct +
n∑

i=1

ci (5.2)

Since the inspection pattern around each target is the same the cost of per-
forming the data collection can be considered constant and equal to the sum of the
costs performing the n simple tasks as described by the term

∑n
i=1 ci. Thus, the

cost of each decomposable simple inspection depends only on the cost to travel
to each object that needs to be inspected ct. It is easy to see that this cost is
dependent on the schedule of inspections an agent has to perform. In other words,
the relative ordering of the targets can change the cost of travel for each one of
them. Such a behaviour is observed in MRTA problems that show in-schedule
dependencies (ID) as shown in section 2.1.3 and figure 2.3.

5.2.3 MRTA as an optimisation problem

The previous section showed that the MRTA problem for underwater inspection
tasks shows in-schedule dependencies based on the cost of travel between the
various inspection targets for each vehicle. Such problems can be modelled as
optimisation problems minimising the travelling costs of the robots in the team.

To achieve that, the problem can be modelled as a fully connected undirected
graph that contains a vertex for each target to be inspected and a vertex for the
starting position of the agents. The weights on the edges connecting the vertices
represent the cost of travelling between these two vertices. The optimisation
procedure must, therefore, find m subsets of vertices, each containing the starting



Chapter 5. Multi-robot task allocation under communication constraints 49

vertex. In each subset, a Hamiltonian cycle is formed, and the sum of their costs
must be minimised. Such a problem is named as multiple Travelling Salesmen
Problem (mTSP) in the literature. An mTSP problem can be formulated as a
Mixed-Integer Linear Program (MILP) as presented in [29] and can be seen below.

min
∑

(i,j)∈A

cijxij (5.3)

s.t.
n∑

j=2

x1j = m, (5.4)

n∑
j=2

xj1 = m, (5.5)

n∑
i=1

xij = 1, j = 2, ..., n (5.6)

n∑
j=1

xij = 1, i = 2, ..., n (5.7)

ui + (L− 2)x1i − xi1 ≤ L− 1, i = 2, ..., n (5.8)

ui + x1i + (2+K)xi1 ≥ 2, i = 2, ..., n (5.9)

x1i + xi1 ≤ 1, i = 2, ..., n (5.10)

ui − uj + Lxij + (L− 2)xji ≤ L− 1, 2 ≤ i 6= j ≤ n (5.11)

xij ∈ {0, 1},∀(i, j) ∈ A. (5.12)

The objective function to be minimised is shown in (5.3). The sum describes
the total cost of traversing all the vertices. The cost of travelling from vertex i
to vertex j is given by cij and xij is a binary variable denoting the existence of a
path between the two vertices in a solution. A is the set of arcs that connect the
vertices.

Constraints (5.4) and (5.5) are used to ensure that the number of routes created
are equal to the number of salesmen m. Appart from the starting vertex, all the
other vertices are allowed to be visited only once. This can be achieved by using
constraints (5.6) and (5.7).

In this formulation, the minimum and the maximum number of vertices a
salesperson can visit can be set by variables K and L respectively. Constraints
(5.8) and (5.9) enforce that these settings are respected. It should be noted that



Chapter 5. Multi-robot task allocation under communication constraints 50

the formulation is valid only for 2 ≤ K ≤ b(n− 1)/mc and L ≥ K, where n is the
number of vertices and m is the number of salesmen.

Constraint (5.10) prevents the salesmen to travel to only one vertex and is
required only in cases where K < 4. Finally, constraint (5.11) is a sub-tour elimi-
nation constraint preventing the creation of disconnected sub-tours. A solution of
a simple mTSP problem can be seen in figure 5.6.

This method can be used in cases where multiple vehicles are deployed to and
extracted from the same place. It optimises the distance each vehicle has to travel
while respecting the minimum and maximum inspection targets that need to be
visited. Tuning the minimum and maximum targets one can affect the utilisation
of the team.

−40 −20 0 20 40

X (m)

−60

−40

−20

0

20

40

60

Y
 (
m
)

0

1
2

3
4

5

6

7

8

9

10

11

12

13

140

1

2

3

4

50

1

2

3

Problem Solution

nodes
route #0
route #1
route #2

Figure 5.6. Solution to an MTSP instance of 20 randomly generated points
using three salespeople. The first vertex was selected to be as the starting
point where all the tours start from and finish to. The minimum number of
visited vertices per tour K is 2, while the maximum L is 20. The total cost
of the tours is 476.444.

Given that in the examined scenario inspection targets are dynamically dis-
covered during the mission execution one should take into account the position of
the robots at the time that the problem is solved. This can be modelled by adding
m vertices to the graph each one representing the current position of the robot.



Chapter 5. Multi-robot task allocation under communication constraints 51

The solved problem then it becomes the Multidepot multiple Travelling Salesmen
Problem (MmTSP). A special case of this problem is when all the agents start
from different locations, but they must end their trip on a single final location.
The Multiple departures single destination mTSP (MDmTSP) problem is of par-
ticular interest for the underwater inspection mission MRTA as it is desirable to
have all the vehicles end their mission on the same place to be collected. The work
presented in [102] presents a MILP formulation for the MDmTSP that is detailed
below.

min
∑

(i,j)∈A

cijxij (5.13)

s.t.
∑
j∈V ′

xij = 1, i ∈ D \ {1} (5.14)

∑
i∈V ′

xij = 0, j ∈ D \ {1} (5.15)∑
j∈V ′

x1j = 0 (5.16)

∑
i∈V ′

xi1 = n (5.17)∑
i∈V

xij = 1, j ∈ V ′ (5.18)∑
j∈V

xij = 1, i ∈ V ′ (5.19)

ui + (L− 2)
∑
k∈D

xki −
∑
k∈D

xik ≤ L− 1, i ∈ V ′ (5.20)

ui +
∑
k∈D

xki + (2+K)
∑
k∈D

xik ≥ 2, i ∈ V ′ (5.21)

xki + xik ≤ 1, k ∈ D, i ∈ V ′ (5.22)

ui − uj + Lxij + (L− 2)xji ≤ L− 1, i 6= j, i, j ∈ V ′ (5.23)

xij ∈ {0, 1},∀i, j ∈ V (5.24)

The objective function of the MDmTSP is shown in (5.13). As in the previous
problems, cij describes the cost of travel from vertex i to vertex j while xij is a
binary variable denoting that a path from i to j exists in the solution. Constraints
(5.14) and (5.15) ensure that from each depot other than the sink depot one sales-
man exits while none returns. Accordingly, constraints (5.16) and (5.17) enforce



Chapter 5. Multi-robot task allocation under communication constraints 52

all the n salesmen to finish their tours in the sink depot, while no tour is permitted
to start from there. All the other vertices are allowed to be visited by only one
salesman. This is shown by constraints (5.18) and (5.19). Constraints (5.20) and
(5.21) set the minimum and maximum vertices each salesman is allowed to visit.
In constraint (5.22) the salesman is prohibited to go directly from his starting
depot to the ending depot. Finally, constraint (5.23) is a sub-tour elimination
constraint.

In figures 5.7 and 5.8 the solution of two MDmTSP instances are presented. In
the first case, the salesmen are allowed to visit the minimum amount of vertices
if it is viable producing a minimal overall distance travelled for all the agents. In
the second case, each salesperson is forced to traverse at least five vertices other
than the starting and ending depot. That, as a consequence, affects the overall
solution cost. These parameters are tuned using the variables K and L.

−40 −20 0 20 40

X (m)

−60

−40

−20

0

20

40

60

Y
 (
m
)

0

1

2

3

4

5

6

0

1

2
3

4

5

6

7

8

910

11

0

1

2

Problem Solution

nodes
route #0
route #1
route #2

Figure 5.7. Solution to an MDmTSP instance for three agents. 16 randomly
generated vertices had to be visited. Three randomly generated vertices de-
noted the start positions of the three agents. A randomly generated vertex
was the ending point of the tours. The total cost of the tours is 383.010.

For the inspection scenario, this can represent vehicles starting from different
positions in the world. In addition, this formulation can be useful when there is a
need to replan a schedule after the mission has started. It will be able to capture



Chapter 5. Multi-robot task allocation under communication constraints 53

−40 −20 0 20 40

X (m)

−60

−40

−20

0

20

40

60

Y
 (
m
)

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

0

1 2

3
4

5

6

Problem Solution

nodes
route #0
route #1
route #2

Figure 5.8. Solution of an MDmTSP instance with minimum visits per
agent. The solution takes place on the same vertices as in 5.7. Each agent
is required to visit at least five vertices other than its starting vertex and the
finishing vertex. The total cost of the tours is 449.955.

the dynamics of the mission with the vehicles being in different positions, as they
are performing different tasks.

5.2.4 Data modelling

As described in the previous section, the optimisation procedure constructs an
undirected graph containing the positions of the vehicles, the positions of objects
to be inspected as well as the final position where the vehicles must end their
mission. It can be seen that information regarding the vehicles as well as the
inspection targets is vital for task allocation. The semantic representation of the
required data stored in the DWM architecture can be seen in figure 5.9.

Regarding the information priorities that the DWM supports it was decided to
give a higher priority to the target information. It is more important to notify the
vehicles of the team when a target is discovered or classified as this will trigger a
new task allocation round. The vehicle position can be accurate enough for task
allocation even if it has diverged a bit since the last time that information was
received.



Chapter 5. Multi-robot task allocation under communication constraints 54

(a) Representation of a target in the
DWM.

(b) Representation of a vehicle in the
DWM.

Figure 5.9. DWM architecture representation of the data required for per-
forming task allocation.

5.3 Experimental setup

As described before an inspection mission requires the team to search an area for
potential targets that need to be inspected and classified. At the beginning of the
mission, none of the targets is known. The targets are incrementally discovered
as the mission progresses, and are then inspected and classified. In this work, the
new targets are discovered at a user-defined interval. As soon as an inspection
target is discovered, its information is shared with the other team members. They
then decide on a task allocation for all the currently not inspected targets. The
task allocation is performed in a distributed manner. Each robot will calculate a
task allocation solution based on its local knowledge about the team status and
execute the part that is allocated to itself. The fact that the communications are
erroneous can lead to inconsistencies of the knowledge between the agents. This
can lead to different allocations and thus different performance.

For the mission studied in the scope of this work the team is composed of
a single SAUV, designated to search an area for targets, and two IAUVs, that
are inspecting those targets. For the simulation experiments, the vehicles are



Chapter 5. Multi-robot task allocation under communication constraints 55

simulated using the navigation simulator for the Nessie VII AUV [103]. This
simulator is a dynamics simulator that uses the hydrodynamic model of the AUV
and is developed by the Ocean Systems Laboratory. In the real world experiments,
the SAUV is still simulated, while the IAUVs are represented by two TurtleBot2
robots [104].

Regarding the communication among the team, it should resemble the under-
water channel, which is error-prone, has low bandwidth and has high latency. For
that, a communications simulator is used, that was developed by the Ocean Sys-
tems Laboratory. The communications simulator is an application level simulator
that allows user-defined error, bandwidth and latency level in communications.

To execute its role in the mission each of the vehicles has modules that are
responsible for planning its actions and executing those plans. Those are the
software parts that can be seen in the top left corner of figure 4.1.

The planning module is present in the IAUVs and is the one that is responsible
for running all the optimisation algorithms that were already described in the
previous section. This module consults the world model through a client library
and generates plans to be executed. Whenever new information regarding the
mission is received through the world model, the module devises an updated plan
and submits it to the executor module. The executor module flowchart for the
two types of vehicles can be seen in figure 5.10.

Figure 5.10a shows the state machine of the search vehicle. It starts its mission
searching for targets. Whenever a target is found it is inserted in the world model.
The world model, in turn, is responsible for synchronising this information with
the inspection vehicles, as has been already mentioned. When the maximum area
is reached the SAUV finishes its mission and goes to the extraction point. The
state machine of the IAUVs is respectively shown in figure 5.10b. The vehicle
stays in place waiting for a list of targets that has to inspect from the planner.
As soon as it receives one, it starts executing the mission. It iteratively follows
the list of targets to inspect until the maximum mission execution time is reached
when it moves to the extraction point. Whenever an updated list of targets is
received the planner triggers a reset in the state machine of the IAUV unless it is
already inspecting a target.



Chapter 5. Multi-robot task allocation under communication constraints 56

(a) State machine for an SAUV. (b) State machine for an IAUV.

Figure 5.10. Execution state machines for the two types of AUVs taking part
in the mission. The SAUV is searching for targets until a maximum search
area is covered. Whenever a target is found it is inserted in the world model.
The IAUV is waiting for targets until a maximum mission time is reached.
Whenever a target is received it is inspected.



Chapter 5. Multi-robot task allocation under communication constraints 57

5.4 Evaluation algorithms

To evaluate the performance of the proposed optimisation based task allocation
methods, they are compared against two different allocation schemes.

The first allocation scheme is a greedy one. In that scheme, the targets are
assigned taking into consideration only the distance of an inspection target from
each candidate AUV. Whenever a new target is discovered the distance from each
robot is calculated. Then the target is assigned to the robot currently closest
to the target. It should be mentioned that in the current implementation of the
greedy algorithm once a target is assigned to a vehicle, it cannot be reassigned to
any other at a later time.

The second allocation strategy is based on the k-means algorithm as presented
in [105]. This allocation strategy tries to take advantage of the spatial proximity of
the targets to be inspected. The k-means algorithm, as presented in [106], provides
a method of clustering a set of observations based on a distance metric. Given a
set of n observations X ∈ Rd, the algorithm tries to partition these observations
into k sets with k ≤ n. It is achieved by choosing k mid-points M that minimize
the potential function shown in equation (5.25).

φ =
∑
x∈X

min
m∈M

‖x−m‖2 (5.25)

Algorithm 5.1 k-Means clustering
Input: Number clusters k, List of points
Output: Cluster centres
1: for i = 1 to k do
2: mi =GetRandomCentre
3: while M changes do
4: for i = 1 to k do
5: GetClosestPoints(i)
6: for i = 1 to k do
7: UpdateCentreOfMass(i)
8: return m

The procedure is simple and can be seen in algorithm 5.1. Initially, the algo-
rithm chooses k random centres, one for each cluster. Then it calculates the points
that are closer to centre mi than any other centre and assigns them to cluster Mi.



Chapter 5. Multi-robot task allocation under communication constraints 58

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Figure 5.11. Clustering of 100 2-d observations in five clusters using the
k-means algorithm. The stars represent the k centres and the data points are
coloured the same as their respective centre of mass.

Following that, it calculates a new centre of mass for each cluster based on the
points assigned to that cluster. This process is repeated until all the centres of
mass are not changing. An example of the k-means algorithm can be seen in figure
5.11. In this paper, the k-means++ algorithm is used, as presented in [107].

In the case of task allocation studied in this work k is set to be equal to the
number of IAUVs, thus creating one cluster per IAUV. Whenever a new target
is detected the clustering algorithm clusters all the unclassified targets. Each
cluster is then assigned to the IAUV that is closest to the mid-point of the cluster.
Finally, each IAUV solves a fast TSP instance to obtain the optimal way to visit
the targets within a cluster.



Chapter 5. Multi-robot task allocation under communication constraints 59

5.5 Results

The previous section described the different aspects of the experimental setup used
to collect results on the proposed MRTA methods. This section will present the
results obtained through simulations and real robot experiments.

5.5.1 Simulation results

The first set of results were collected through simulations and were presented in
[108]. The robots had to perform a simulated inspection mission, like the ones
described before. This work evaluated the performance of the mTSP optimal
allocation method against a greedy and a k-Means based heuristic.

The mission starts with the three vehicles placed close to each other and having
no knowledge of any targets. Then the SAUV starts discovering a new, randomly
generated, target every minute until the total amount of discovered targets is
reached. For these simulations, the number of targets to be discovered was set to
ten. The time interval between the discovered targets is chosen so that the target
discovery is spread during the mission. A lower interval would be equivalent of
knowing all the targets at the beginning of the mission, while a much larger interval
would have only one task allocated each time defying the purpose of needing an
MRTA strategy. The amount of targets is chosen so that the mission is not too
long while being long enough for requiring some more sophisticated MRTA.

As new targets are discovered, they are inserted in the world model of the
SAUV and are respectively synchronised with the world models of the IAUVs.
Whenever an IAUV receives a target, it allocates it to one vehicle according to
its allocation strategy. It then proceeds to execute its updated plan. To simulate
the inspection and classification phases for the IAUVs, an inactivity period of 1.5
minutes is imposed whenever they reach a target. This is chosen again for allowing
enough targets to remain unclassified and the MRTA to be required. Finally,
the mission ends when all the targets have been classified and the classification
information propagated to the whole team.

To ensure the correct evaluation of the allocation methods a systematic ap-
proach has to be followed. To avoid favouring a specific method due to a specific
target generation pattern, ten sets with randomly generated targets are used. The
targets are randomly generated in an area of 100 by 100 meters around the initial



Chapter 5. Multi-robot task allocation under communication constraints 60

position of the SAUV. The generation is performed offline, and the targets are
provided to the SAUV at the beginning of the mission. It then iteratively inserts
them in its world model at the predefined rate.

To evaluate the effect the underwater communications channel has on the effi-
ciency of the different task optimisation strategies, various communication condi-
tions are tested. Initially, the maximum size of each acoustic packet is set to 512
bytes. This is a typical value for some of the underwater modems available. The
time it takes to travel from the source to the destination is set to two seconds.
This value is chosen given the sound propagation speed, the average distance of
the vehicles during the mission and the time to encode and decode the information
from the modem. The time slot duration for each vehicle, for the TDMA MAC
control of the channel, is set to ten seconds. Finally, different packet error rates
(PER) are used. This is done to show how the dropping quality in the communica-
tions channel affected the mission planning execution. In specific, 0%, 20%, 40%
and 60% of PER is selected, meaning that in each case the selected percentage of
messages are considered lost. The message loss is determined at the beginning of
the transmission so that randomly messages are dropped based on the PER.

The collected results are analysed under the scope of distance and time ef-
ficiency of each method. On the one hand, the total distance travelled by the
two vehicles is chosen as a metric of energy efficiency. One of the most energy
consuming actions of a vehicle is moving, as the motors are demanding in power.
Minimising the distance each robot has to travel, means that the energy con-
sumption is minimised. The energy saved can be used to perform other tasks, or
perform more extended missions without the need for recharging.

On the other hand, time efficiency is vital regarding mission execution. Some-
times, the missions the robots are trying to solve are time critical, requiring results
as fast as possible. In addition to that, lowering the time required to accomplish
a mission can reduce the costs and effort required for a given mission. This can
be achieved as the users of the robotic systems will spend less time on the field
collecting data, allowing them to produce results faster.

The results regarding the distance efficiency of each method for different values
of error rates can be seen in figure 5.12. When there is no error in communica-
tion the greedy and k-Means based methods are performing almost equally good,
while the mTSP based method performed on average about 6% worse. The same



Chapter 5. Multi-robot task allocation under communication constraints 61

Figure 5.12. Average total distance travelled for different values of packet
error rate. Error bars represent one standard deviation. The greedy method
performs consistently good. The k-Means method is better in lower packet
error rates, while the mTSP performs better in higher packet error rates.

behaviour is observed in low error rates (i.e. 20%). As the error rates grow to 40%
and 60%, the mTSP method performs better. It constantly shows better results
than the k-Means based method, while it performs at least equally good as the
greedy method. In general, the performance of the greedy method regarding the
distance is noteworthy.

The time efficiency results for each method and error rate are presented in
figure 5.13. In general, one can see that the time to perform the mission increases
with the error rate. That is expected, as the information synchronisation is harder.
Additionally, it is visible that the k-Means method is consistently performing
better than the other methods. The mTSP method is always really close to the
k-Means, in the region of less than 5% difference. Finally, the greedy method
performs always the worst on average.

Having the above quantitative result sets and having observed the simulated



Chapter 5. Multi-robot task allocation under communication constraints 62

Figure 5.13. Average total mission time for different values of packet error
rate. Error bars represent one standard deviation. The k-Means method is
constantly giving the best results. The mTSP method is very close to that.
The greedy method is the worst performer in general.

vehicle behaviour, one can attempt to perform a qualitative analysis. A general
trend is that the greedy method requires less total distance to be travelled by the
inspection vehicles, while the total mission time is higher than the other methods.
This can be explained by the way the assignment is performed in the greedy
allocation. The greedy method is assigning the targets to the closest robot, and
then the targets are visited in an optimised way provided by an internal TSP solver.
In this way, the number of targets assigned to each robot can be unbalanced,
and one robot may remain idle for long periods. There are cases that one robot
performed the whole mission alone, while the second remained at the starting
position.

Another issue that the greedy algorithm is facing emerges from the incon-
sistencies in the world model of each robot caused by the latent and erroneous
communications. There are cases where the robots had old information regarding



Chapter 5. Multi-robot task allocation under communication constraints 63

the position of each other and wrongly assigned a target. As the greedy scheme is
not allowing for a reallocation, this caused problems with the mission execution,
especially in high packet error rates. The solution to that is to set a timer of the
expected end of the mission with the current information. If this timer expires
and the mission is not finished then a total reallocation is taking place.

Comparing the k-Means with the mTSP approach one can see that they are
almost equally good, with the exception of high communication error rates. In
that case, the k-Means highly underperformed in terms of distance travelled.

5.5.2 Real vehicle results

In the previous section, the simulated experiments showed that the two non-greedy
methods performed equally well. Unfortunately, the mTSP algorithm for the
optimised allocation does not take into consideration the dynamics of the mission
as each plan is generated considering the robots are at the starting point. When
the plan is devised, and targets are allocated to robots, an internal TSP solver is
used to visit them optimally from the current position of the robot. This can lead
to suboptimal allocations as the current position of the robot is not considered
and eventually may require to travel longer distances.

As already described before, to overcome this issue the use of an MDmTSP
instance can be used that will allocate the available tasks taking into account
both the current robots position and the final position that they need to be after
finishing the mission. This approach is evaluated using real-world experiments are
run in the space of the Ocean Systems Laboratory, using real robots as inspection
vehicles. Two different virtual target detection patterns are used. The map of the
lab, generated by manually driving one robot around and using its sensor, along
with the two detection patterns can be seen in figures 5.14a and 5.14b. For this
set of experiments, it was assumed that the robots already have a map of the
environment.

The target detection simulation is done similarly as in the previous section.
Predefined virtual targets are discovered at a regular interval of one minute, and
the simulation of the inspection and classification phases is defined by setting a
1.5 minute period where the robot was idle. Regarding the communication delays
and errors, the same simulator is used. Its settings are fixed to a packet size of



Chapter 5. Multi-robot task allocation under communication constraints 64

(a) (b)

Figure 5.14. Maps of the Ocean Systems Laboratory created by a Turtlebot
using a Kinect sensor. The stars represent the virtual targets the robots have
to inspect with the numbers denoting the order of discovery.

512 bytes, while the time to travel from source to destination is set to 0.5 seconds.
In addition to that, the timeslot for the TDMA MAC was set to three seconds.
Finally, the packet error rate was set to 10%.

For this set of experiments, four different allocation schemes are examined.
The first one is a greedy approach as the one used in the previous section. The
second is a k-Means based one that clustered the targets taking into account
only the Euclidean distance between them. Finally, two different versions of the
MDmTSP are tested. The one aims at optimal allocation setting the parameter
K that controls the minimum targets allowed to be visited by a vehicle to 1. The
second is a fair flavour of the MDmTSP where the minimum targets per robot
aim at an equal workload.

The comparison metrics are again the total distance travelled by both robots
and the time required to classify all the targets. The distance is calculated by
integrating the navigation data provided by the robots. The total time is computed
from the beginning of the mission until the time the classification information of
the last target is passed to the whole team. It must be noted that the total distance
contains the distance required to travel to the ending point of the mission, while
this is not added to the total time.

The results for the different allocation methods used on the first detection
pattern as shown in 5.14a are presented in table 5.1. This table presents the
average total distance and mission completion time over five trials. The best



Chapter 5. Multi-robot task allocation under communication constraints 65

Table 5.1. Average total distance and time execution for the four different
allocation methods under the first detection pattern.

Allocation method Greedy k-Means MDmTSP
K=1 K=fair

Average distance (m) 56.83 69.64 62.99 68.93
Average time (mins) 18.83 10.81 14.44 10.71

method regarding the total distance travelled is the greedy one. It is followed by
the unfair MDmTSP and last, are the k-Means and the fair MDmTSP. Regarding
the time to mission completion, the things are exactly the opposite. The k-Means
and the fair MDmTSP are the fastest to finish. The unfair MDmTSP is third,
and the last one is the greedy method.

This behaviour reflects what has been observed in the simulation trials and can
be seen in figure 5.15 and in videos of the execution1. In the greedy method, only
one robot is used as shown in figure 5.15a. This leads to a path optimised execution
as the internal TSP solver optimised the distance travelled but the execution time
is almost double than the best methods. Using the unfair MDmTSP method,
one vehicle has to do more work as it is shown in figure 5.15c, and is reflected in
the distance and execution time. The k-Means and fair MDmTSP methods are
shown in figures 5.15b and 5.15d. In both cases, the targets are equally distributed
between the two inspection vehicles and optimal paths are travelled. This way the
execution time is minimised despite the maximal total travelled distance.

Table 5.2. Average total distance and time execution for the four different
allocation methods under the second detection pattern.

Allocation method Greedy k-Means MDmTSP
K=1 K=fair

Average distance (m) 47.43 78.54 68.44 62.65
Average time (mins) 18.93 11.68 12.87 10.95

The average results over five trials for the second detection pattern can be
seen in table 5.2. As with the previous pattern, the greedy method performs the
best in terms of distance efficiency. The second method is the fair version of the
MDmTSP. Following is the unfair method of the MDmTSP, and the last method

1http://osl.eps.hw.ac.uk/videos/icra16mmtsp



Chapter 5. Multi-robot task allocation under communication constraints 66

(a) (b)

(c) (d)

Figure 5.15. Paths traversed by the two robots for the first target detection
pattern. (a) shows the greedy task allocation, (b) is the k-Means task allo-
cation, (c) shows the simple MDmTSP task allocation and (d) shows the fair
MDmTSP task allocation.

is the k-Means one. In terms of time, the fair MDmTSP is the most efficient,
with the k-Means and unfair MDmTSP closely following. The last one is again
the greedy method.

Again the greedy approach uses one vehicle as can be seen in figure 5.16a as
all the targets to be inspected are always closer to one of the two. The k-Means
heuristic having no knowledge of the structure of the environment, groups the
targets in a way that requires more distance to be travelled as seen in figure 5.16b.
Nevertheless, since both vehicles are used the execution time is much better than
the greedy approach. The unfair version of the MDmTSP presented in 5.16c
performs close to the k-Means heuristic showing similar allocation. Finally, the
fair MDmTSP, shown in figure 5.16d, manages to cluster the targets and provide
an efficient solution.



Chapter 5. Multi-robot task allocation under communication constraints 67

(a) (b)

(c) (d)

Figure 5.16. Paths traversed by the two robots for the second target detec-
tion pattern. (a) shows the greedy task allocation, (b) is the k-Means task
allocation, (c) shows the simple MDmTSP task allocation and (d) is the fair
MDmTSP task allocation.

In general, it can be seen that the order of the discovered targets can affect
the performance of the different allocation methods. Heuristics can still perform
close to optimal regarding the execution time but requiring more distance to be
travelled. The optimisation based task allocation performs equally or better than
the heuristics. In addition, it offers a method to tune its behaviour based on user
preferences on execution time or the total travelled distance of the team.

5.6 Summary

This chapter presented the MRTA problem under communication constraints for
inspection tasks. Such tasks are mine countermeasures or underwater archaeology
missions. A formal analysis of the problem was performed, and methods from



Chapter 5. Multi-robot task allocation under communication constraints 68

the optimisation literature were presented. An experimental evaluation was con-
ducted both in simulation and with real robots showing the performance of the
optimisation based MRTA in various communication error levels. In general, it
performs equally or better than simple heuristic methods from the literature.



Chapter 6

Sample collection optimisation

The previous chapter studied an optimisation based MRTA technique for perform-
ing inspection missions under communication constraints. Another important type
of missions is the one where robots need to collect sampling data over an area.
These sensing missions are often used to monitor various phenomena happening
in the environment. For example, phenomena like algal blooms, oil spills and
chemical pollution need to be monitored and their extent to be estimated [18].
However, operating in the real environment, robots have to cope with its dynamic
nature and many constraints it may impose on the mission execution.

This chapter focuses on such missions that require the optimisation of the sam-
pling strategy while respecting some budget constraints. As a budget constraint
one can see the maximum time that is available to complete the mission. For ex-
ample, in emergencies, time is of the essence. It is required to gather the maximum
amount of information in a limited amount of time so that a response plan can be
devised. Likewise, the maximum amount of energy that is allowed to be spent can
be a form of resource constraint. For example, in a highly tidal environment, the
currents developed are strong and affect the mission execution energy and time
[4]. In such cases, it is required to maximise the sensing outcome with a limited
amount of energy, as well as, to be able to replan a maximising trajectory online.
Online replanning is also required in longer scale missions when an area needs to
be monitored periodically. The behaviour of the vehicle needs to be adapted to
the current environmental conditions of each measurement cycle. In the missions
studied in this work, one or more AUVs will take part and try to optimise their
behaviour. It should be noted that this work focuses on underwater vehicles, but

69



Chapter 6. Sample collection optimisation 70

the proposed approaches can be easily transferred to any domain.
At the beginning a Mixed Integer Quadratic Problem (MIQP) formulation for

the sampling optimisation problem described in chapter 2 will be detailed. Next,
Genetic Algorithm (GA) based heuristics are presented for solving the optimisation
problem in an online manner for one or more sampling vehicles. Finally, the
proposed heuristics are evaluated in benchmark sampling scenarios against the
MIQP approach.

6.1 Mixed Integer Quadratic Programming For-
mulation

In section 2.2 the problem of estimating a scalar field was described. In that
problem, there is a set of sampling points that need to be visited while respecting
some cost constraint. One can represent the problem using a fully connected
undirected graph where each vertex is a sampling point. The weights of the edges
between the vertices represent the cost of going from one vertex to the other. The
optimisation problem then is to find a subset of these vertices should be visited
that maximises the gained reward while respecting the cost.

As it was mentioned, the Gaussian process probabilistic method for field es-
timation assumes that there is a correlation between the measurements. This
correlation information can be taken into account in the optimisation process pro-
viding better results. A method that does that is presented in [10], [11] where
a variant of the orienteering problem is used for persistent monitoring tasks us-
ing Unmanned Aerial Vehicles. The presented approach introduces the Correlated
Orienteering Problem (COP), a problem that takes into account the correlation of
information among the sampling points, while respecting some budget constraints.
In that work, a MIQP formulation is provided. A modified version of it where the
vehicle must start and finish in user-defined points is subsequently presented.

max
∑
i∈V

(rixi +
∑

vj∈Ni

rjwijxi(xi − xj)) (6.1)

s.t.
∑

i∈V \{s}

xis =
∑

i∈V \{f }

xfi = 0 (6.2)



Chapter 6. Sample collection optimisation 71

∑
i∈V \{s}

xsi =
∑

i∈V \{f }

xif = xs = xf = 1 (6.3)

∑
i∈V \{sf }

xik = xi ≤ 1 ∀k ∈ V \ s, f (6.4)

∑
i∈V \{sf }

xki = xi ≤ 1 ∀k ∈ V \ s, f (6.5)

∑
i∈V \f

xik =
∑

i∈V \s

xki ∀k ∈ V \ s, f (6.6)

∑
i∈V

xici +
∑
j∈V

cijxij ≤ Cmax (6.7)

ui − uj + 1 ≤ (|V |− 1)(1− xij) ∀i, j ∈ V, i 6= j (6.8)

0 ≤ ui ≤ |V | ∀i ∈ V (6.9)

xij ∈ {0, 1} ∀i, j ∈ V (6.10)

The objective function, seen in (6.1) is the sum over the rewards of all the
visited vertices. The set V includes all the vertices. The reward for visiting vertex
i is described by variable ri, while xi is a binary variable denoting that a vertex i
is visited in a solution. As mentioned before, the COP considers the cases where
there is a correlation between the vertices. This is translated in profits even from
unvisited vertices based on some function. These vertices form the neighbourhood
of vertex i, represented by Ni. The reward based on this correlation is added to the
utility obtained by visiting vertex i. It is calculated as the sum of the rewards for
visiting each vertex j in the neighbourhood, multiplied by a weight wij depending
on vertices i and j and the quadratic term xi(xi−xj). This quadratic term ensures
that extra reward, produced by correlation, is only added for vertices that are not
visited in the current solution.

In the version of the COP presented in this work it is assumed that the agent
must start and finish in user defined points. This is enforced by constraints (6.2)
and (6.3). Here the binary variable xsi denotes that vertex i is visited right after
the starting vertex s and xif shows that the finishing vertex is after vertex i. In
general xij is a binary variable denoting that a path exists from vertex i to vertex
j.

For all the other vertices constraints (6.4), (6.5) and (6.6) are applied. Con-
straints (6.4) and (6.5) allow vertices to be left out from a solution and enforce
that a vertex is visited at most once. Constraint (6.6) ensures that if a vertex is



Chapter 6. Sample collection optimisation 72

visited it must continue the path to another vertex, unless it is the user defined
finish vertex.

Constraint (6.7) bounds the vehicle to use a maximum amount of budget. In
constraint (6.7), the term xici represents a fixed cost of visiting vertex i. The
cost of travelling from vertex i to the next vertex is added to that, as denoted by
cijxij. It should be noted that the fixed cost of visiting a vertex is not added for
the user-defined start and finish vertices.

Constraint (6.8) allows only a single path to be generated, preventing smaller
disjoint tours. Finally, constraints (6.9) and (6.10) bound the specific problem
variables to a certain allowed range.

A sample solution for the COP can be seen in figure 6.1. It can be seen that
the path is spread over all the area trying to maximise the points reached by
correlation. The reward gathered by correlation from each vertex is calculated
using a weight shown in (2.8). For this example the value of l was set to two; this
results in a reward of 20.7.

Figure 6.1. Solution to a COP instance for a 6x6 grid. Starting point was
set to be (−0.5, 0) and ending point was (−0.5, 7). The maximum allowed
cost was 30 units. The reward gathered was 20.7.

When multiple vehicles are available, the COP can be extended to provide
paths that maximise the team performance. The problem is then named the



Chapter 6. Sample collection optimisation 73

Correlated Team Orienteering Problem (CTOP). A MIQP formulation for that
has also been presented in the work of [10], [11]. The formulation maximises the
following objective function:

∑
i∈V

(rixi +
∑

vj∈Ni

rjwijxi(xi − xj)) (6.11)

For any given solution the objective function represents the sum of the reward
of each of the visited vertices in that solution. All the vertices are included in set
V . The variable ri represents the reward for visiting vertex i in a solution. To
encode that a vertex i is visited in a given solution, the binary variable xi is used.
In addition to the reward received for visiting a vertex i, an additional reward is
obtained from its neighbourhood Ni. This reward is calculated by summing the
reward of each unvisited neighbour j multiplied by a weight wij. To ensure that
only reward from unvisited vertices will be added, the quadratic term xi(xi − xj)

is used.
To enforce that m vehicles start and finish in user defined points, constraints

(6.12) and (6.13) are used.

∑
i∈V \{s}

xisk =
∑

i∈V \{f }

xfik = 0, ∀1 ≤ k ≤ m (6.12)

∑
i∈V \{s}

xsik =
∑

i∈V \{f }

xifk = m, ∀1 ≤ k ≤ m (6.13)

In this formulation a binary variable xijk is showing that a path exists from
vertex i to vertex j in the path of vehicle k. Specifically, xsik shows that any vertex
i is visited right after the starting vertex s for the path of vehicle k. Likewise,
variable xifk defines that the finishing vertex is after vertex i. For all the other
vertices in the solution constraints (6.14)-(6.18) are applied.

∑
j∈V \{sf }

xijk ≤ 1, ∀i ∈ V \ s, f , 1 ≤ k ≤ m (6.14)

∑
j∈V \{sf }

xjik ≤ 1, ∀i ∈ V \ s, f , 1 ≤ k ≤ m (6.15)



Chapter 6. Sample collection optimisation 74

In the solution, each vertex is visited at most once, as it is ensured from
constraints (6.14) and (6.15). This behaviour is enforced by allowing at most one
path entering and one leaving in each of the vertices in V, other than the start
and finish. This happens for all the m paths.

m∑
k=1

∑
j∈V \{sf }

xijk = xi ≤ 1, ∀i ∈ V \ f (6.16)

m∑
k=1

∑
j∈V \{sf }

xjik = xi ≤ 1, ∀i ∈ V \ s (6.17)

∑
j∈V \{sf }

xijk =
∑

j∈V \{sf }

xjik, ∀i ∈ V, 1 ≤ k ≤ m (6.18)

Constraints (6.16) and (6.17) make sure that if a vertex j is visited in a solution,
a path that connects j with a next vertex exists. Constraint (6.18) prevents a
vertex having a path from one vehicle entering and the path of a different vehicle
exiting it. The maximum amount of resources used is enforced by constraint
(6.19).

∑
i∈V

∑
j∈V

(cij + ci)xijk ≤ Ck, ∀1 ≤ k ≤ m (6.19)

Term ci represents a fixed cost of performing sensing in vertex i. To that, the
cost of travelling from vertex i to the next vertex cij is added. Then the cost
is multiplied by the binary variable xijk, used to denote the existence of a path
between i and j in the path of robot k. The sum of all these costs must be less or
equal to the maximum allowed resource usage for robot k. It must be noted that
the fixed cost of operations of the user-defined start and finish vertices is zero.

uik − ujk + 1 ≤ (|V |− 1)(1− xijk)

∀i, j ∈ V, i 6= j,∀1 ≤ k ≤ m
(6.20)

0 ≤ uik ≤ |V |

∀i ∈ V, ∀1 ≤ k ≤ m
(6.21)

Finally, constraints (6.20) and (6.21) are subtour elimination constraints, al-



Chapter 6. Sample collection optimisation 75

lowing only a single tour to be generated for each robot.

−3 −2 −1 0 1 2
X (m)

0

1

2

3

4

5

6

7

Y 
(m

)

0

123

4

5 6 7

89

1011

12 13 14

15

0

1 2 3

456

7

8 9 10

11

121314

15

Problem Solution
nodes
route #0
route #1

Figure 6.2. Solution to a CTOP instance for a 6x6 grid. Starting point was
set to be (−0.5, 0) and ending point was (−0.5, 7). The maximum allowed cost
was 30 units per agent, while there were two agents available. The reward
gathered was 20.7.

In figure 6.2 is presented. The solution was obtained using the aforementioned
MIQP formulation. The two agents started from (−0.5, 0) and ended at (−0.5, 7).
Each agent had a budget of 30, and the optimal solution gave a profit of 31.279.

6.2 Genetic Algorithm Heuristic

In the work presented by [10], [11] the COP is solved using the commercial solver
Gurobi [13]. There, the anytime property of that solution is stressed, meaning
that the execution can stop anytime and get a solution with some optimality
guarantee. In [109] the method was adapted to include constraints for the starting
and finishing the missions on specific vertices. There it was observed that having
a close to the optimal solution is prohibitive for online use as its time complexity
is high even for moderate instances.

To overcome the problem of the time complexity, the work presented in [110]
introduced a GA based heuristic. The proposed algorithm is the first presented



Chapter 6. Sample collection optimisation 76

heuristic for the COP. Therefore, most of the parts are newly presented. In par-
ticular, unlike other methods, it heavily uses 2-opt optimisation [111] in every
solution step. This way it tries to increase the number of sampling points in the
solution. Additionally, it presents a novel mutation method. In previous works
using GA for solving the standard orienteering problem, a mutation was either
adding or removing vertices (genes) from a solution. This work instead proposes
that a vertex may be beneficial to be swapped with one of its neighbouring ver-
tices. This technique is used whenever a chromosome is very close to its maximum
length, and new vertices cannot be inserted without violating the cost constraints.
Moreover, to have better performance, the mutations are performed in parallel,
taking advantage of modern multicore architectures. Finally, it is proposed to try
further to optimise the fittest chromosome after the genetic algorithm finishes.

Algorithm 6.1 Genetic Algorithm for the Correlated Orienteering Problem
Input: TravelCosts, Rewards,MaxCost, Start, F inish

Output: FittestChromosome
1: InitialisePopulation
2: while generation ≤MaxGeneration do
3: SelectNewPopulation
4: Crossover
5: Mutate
6: Select and Optimise FittestChromosome
7: return FittestChromosome

As it can be seen from algorithm 6.1 the optimisation process consists of five
steps. Initially, a population of chromosomes is generated. Each chromosome
represents a candidate solution. It is encoded as a vector containing the indices
of the vertices to be visited in that solution.

In the second step, the chromosomes are going through repetitive operations
until a maximum number of generations is reached. Each generation starts by
selecting a new population based on a natural selection process applied to the
previous generation. Then, a number of chromosomes are allowed to reproduce
and generate offsprings. Finally, a number of randomly selected individuals are
going through a mutation process. When the maximum number of generations
is reached, the fittest chromosome is selected. Then some final optimisation is
performed on that chromosome, and it is returned as the solution to the problem.
The fitness of each chromosome is calculated as shown in (6.22), which is proposed



Chapter 6. Sample collection optimisation 77

in [70].

Fitness = Reward3/cost (6.22)

Algorithm 6.2 Initialise Population
Input: PopSize, TravelCosts,MaxCost, Start, F inish

Output: Population
1: Population← [∅]

2: for i← 1, PopSize do
3: CR← [Start]

4: V ← [1, . . . , NumV ertices]

5: while !Done && V 6= [∅] do
6: v ← SelectRandom(V )
7: if costCR+v ≤MaxCost then
8: CR← CR + v

9: V ← V \ v

10: else
11: Done← True

12: CR← CR + Finish

13: CR← TwoOpt(CR)
14: Population← Population+ CR

15: return Population

Algorithm 6.2 describes the first step in the GA heuristic method, namely,
the population initialisation. The population is initialised as an empty list. It
is then populated with a user-defined PopSize chromosomes. Each chromosome
is generated in the following way. Initially, the chromosome contains only the
starting vertex. Next, a random vertex v is selected from the set V of free vertices.
If the current cost of the chromosome plus the cost of travelling to v is lower than
the maximum allowed cost MaxCost, the vertex is appended to the chromosome.
The process is repeated until the MaxCost is reached or there are no more free
vertices left. After that, the finish vertex is appended to the chromosome. The
next step is to perform a 2-opt optimisation to the chromosome and append it to
the population list. This process is repeated PopSize times.

After the population initialisation, the main iterative part of the algorithm
begins. The first step is the generation of a new population based on a natural se-



Chapter 6. Sample collection optimisation 78

Algorithm 6.3 Select new population
Input: Population, TourSize
Output: NewPopulation
1: Pop← Population

2: NewPopulation← [∅]

3: for i← 1, PopSize do
4: Candidates← SelectRandom(Pop, TourSize)
5: Fittest← GetFittest(Candidates)
6: NewPopulation← NewPopulation+ Fittest

7: return NewPopulation

(a) (b)

Figure 6.3. Two chromosomes before and after the crossover operation. The
two parents have a common gene. The operation takes place by swapping the
paths after that gene.

lection process. This is performed using a standard technique in the GA literature
called Tournament selection and presented in algorithm 6.3. This algorithm starts
with an empty new population. It is then populated by performing PopSize tour-
naments aiming to select candidates based on their fitness. For each tournament
TourSize candidates are randomly selected from the old population. The fittest
of the candidates is then winning and is appended to the new population.

The next step, following the population selection, is the crossover operation
allowing parts of the population to reproduce and generate offsprings. This process
is described in algorithm 6.4. To perform the crossover operation, initially, two
individuals are selected randomly from the population. Then the set of common
genes of the two parents is calculated. If the set is empty the combination is
incompatible for crossover and the operation is not performed. If the set is not
empty, then a random gene is selected. The two parent chromosomes are then
sliced at that gene, and two offsprings are generated by swapping the parent’s tail
parts. The operation can be seen in figure 6.3.

The offsprings are then going through 2-opt optimisation, any duplicate genes



Chapter 6. Sample collection optimisation 79

Algorithm 6.4 Population crossover
Input: Population,NumCrossovers
Output: Population
1: Pop← Population

2: for i← 1,NumCrossovers do
3: CR1, CR2 ← SelectRandom(Pop, 2)
4: I ← GetCommonGenes(CR1, CR2)
5: if I 6= [∅] then
6: RG← SelectRandom(I, 1)
7: OF 1 ← [CR1

[1,RG], CR
2
[RG,end]]

8: OF 2 ← [CR2
[1,RG], CR

1
[RG,end]]

9: OF 1 ← TwoOpt(OF 1)
10: OF 2 ← TwoOpt(OF 2)
11: OF 1 ← RemoveDuplicates(OF 1)
12: OF 2 ← RemoveDuplicates(OF 2)
13: Feas1 ← CheckFeasibility(OF 1)
14: Feas2 ← CheckFeasibility(OF 2)
15: if Feas1 && Feas2 then
16: PopCR1 ← OF 1

17: PopCR2 ← OF 2

18: else
19: if Feas1 then
20: PopCR2 ← GetFittest(CR1, CR2)
21: PopCR1 ← OF 1

22: else if Feas2 then
23: PopCR1 ← GetFittest(CR1, CR2)
24: PopCR2 ← OF 2

25: return Pop



Chapter 6. Sample collection optimisation 80

are removed, and their feasibility is calculated by comparing them to theMaxCost.
If both are feasible, then their parents are replaced by them in the population.
If only one is feasible, it replaces the respective parent, and the other parent is
replaced by the fittest of the two parents. Finally, if the offsprings are not feasi-
ble, then the parents are remaining in the population. This process is repeated
NumCrossovers times.

Algorithm 6.5 Population mutation
Input: Population, PopMut, CrMut,AddProb

Output: Population
1: Pop← Population

2: CR← SelectRandom(Pop, PopMut)
3: for i← 1, PopMut do
4: M ← TwoOpt(CRi)
5: M ← RemoveDuplicates(M)
6: V ← [1, . . . , NumV ertices]

7: FV ← V \M

8: for j ← 1, CrMut do
9: p← GetRandom(0, 1)
10: if p ≤ AddProb then
11: if CostM ≥ 0.99 ∗max_cost then
12: v ← SelectRandom(M, 1)
13: n← GetMaxFreeNeighbour(Mv)
14: if FitMv ≤ FitMn then
15: Mv ←Mn

16: else
17: if FV 6= [∅] then
18: v ← SelectRandom(FV, 1)
19: idx← FindBestInsertion(v,M)
20: M ←M[ . . . , idx, v, idx+ 1, . . . ]

21: else
22: if costM ≥ 0.99 ∗max_cost then
23: v ← GetMinLossGene(M)
24: M ←M[ . . . , v − 1, v + 1, . . . ]

25: PopCRi
←M

26: return Pop

The final step in the iterative part of the GA optimisation process is the mu-
tation step. It is described in algorithm 6.5. Initially PopMut chromosomes are
randomly selected from the population. Then each chromosome goes through the



Chapter 6. Sample collection optimisation 81

following mutation process. The first step applies a 2-opt and removes any dupli-
cate genes. Then, the set of free vertices is calculated. In each mutation process,
CrMut operations take place.

The mutation operations can be either the addition or the removal of a gene
with some probability. The addition operation has two behaviours depending on
the cost of the chromosome. The first behaviour occurs when the chromosome has
a cost close to the MaxCost. In that case, a random gene is selected from the
chromosome. A search over the free neighbours of that chromosome is performed,
and the fitness of replacing the selected gene with its neighbour is calculated. If
that fitness is higher than the current fitness, the mutation happens. The second
behaviour, happening in chromosomes with low cost, selects a random gene from
the free genes. Then it finds the best position for insertion and inserts it there.
The removal operation happens only in chromosomes with a cost close to the
MaxCost. In those cases, the gene whose removal causes the minimum fitness
loss is selected. It is then removed from the chromosome.

After the maximum number of generations is reached the fittest chromosome is
selected. On that chromosome, a final optimisation round is applied. In this last
round, each gene is traversed and is checked if replacing it with any of its neigh-
bours results in higher fitness feasible chromosome. If yes a swap is performed.
After this final step, the chromosome is the solution to the COP instance.

When the sampling is performed by more than one vehicles, the problem is
described as the CTOP according to [10], [11]. Following is a GA based method
to solve the CTOP online, as solving the previously presented MIQP with any
commercial solver is prohibitively expensive.

Algorithm 6.6 Genetic Algorithm for the Correlated Team Orienteering Problem
Input: TravelCosts, Rewards,MaxCosts, Start, F inish

Output: FittestChromosome
1: InitialisePopulation
2: while gen ≤MaxGen or FittestChromosome stable for 10 generations do
3: SelectNewPopulation
4: Crossover
5: Mutate
6: select FittestChromosome
7: return FittestChromosome

The genetic algorithm presented here uses the chromosome encoding as pre-



Chapter 6. Sample collection optimisation 82

sented in [112]. It is composed of a set vectors, or genes, each one of which is
representing a path for a single robot. In each vector, the indices of the vertices to
be visited by that robot is stored. The whole chromosome, therefore, represents a
candidate CTOP solution. An outline of the procedure used during the optimisa-
tion can be seen in algorithm 6.6. It can be seen that the optimisation procedure
is separated into two distinct phases. The first phase is responsible for the pop-
ulation generation, while the second phase repeatedly applies the operations of
selection, crossover and mutation to optimise the population.

In the scope of this work, two different chromosome generation methods are
presented. The difference is based on the way the genes, composing the chromo-
some, are generated. The first method is a random method, similar to the one
presented in [110]. It can be seen in algorithm 6.7.

Algorithm 6.7 Random Gene Generation
Input: TravelCosts, Rewards,MaxCost, Start, F inish,AvailV ertices

Output: Gene,AvailV ertices
1: Insert(Gene, Start)
2: Done ← False

3: while !Done and AvailV ertices 6= ∅ do
4: v ← SelectRandom(AvailV ertices)
5: if CostInsert(Gene, v) ≤MaxCost then
6: Insert(Gene, v)
7: AvailV ertices← AvailV ertices \ v

8: else
9: Done← True

10: Insert(Gene, F inish)
11: return Gene,AvailV ertices

In the random generation method, genes are created by randomly inserting
vertices until the maximum cost is reached or until there are no more free vertices
to insert. To generate a chromosome this process is repeated a number of times,
equal to the number of robots. In the chromosome generation process, the set of
available vertices is shared among the genes, so that if a vertex is picked up by a
robot, it cannot be assigned to any other robot.

The second gene generation method is named Nearest Neighbour Randomised
Adaptive Search Procedure (NN-RASP). It is inspired by the Greedy Randomised
Adaptive Search Procedure (GRASP) that is used in [82] to provide a heuristic



Chapter 6. Sample collection optimisation 83

solution to the TOP. This procedure is taking into consideration the peculiarities
of the CTOP problem, regarding the correlation of information. It and can be
seen in algorithm 6.8.

Algorithm 6.8 Nearest Neighbour Randomised Adaptive Search Procedure
Input: TravelCosts, Rewards,MaxCost, Start, F inish

Output: Gene
1: Insert(Gene, Start)
2: v ← GetLast(Gene)
3: N ← GetNeighbours(v)
4: while GetSize(N) > 0 do
5: for each n ∈ N do
6: GetDistanceWeight(n)
7: GetNeighbourWeight(n)
8: GetCombinedWeight(n)
9: nv ← GetWeightedRandom(N)

10: if CostInsert(Gene, nv) <=MaxCost then
11: Insert(Gene, nv)
12: v ← GetLast(Gene)
13: N ← GetNeighbours(v)
14: else
15: N ← {∅}

16: Insert(Gene, F inish)
17: return Gene

This method is based on progressively constructing a path by choosing one of
the neighbours of the last inserted vertex in the path. The neighbour to be inserted
is chosen based on a categorical distribution where each one has a probability of
being chosen. This probability is based on the distance of the neighbouring vertex
from all other visited vertices in the solution and the number of free neighbours it
has. The distance from other vertices is chosen as this can reduce the overlapping
of paths. The number of free neighbours is used as it gives a better reward from
correlated information, as well as, it will allow the path to have more options to
continue its construction. When a vertex is chosen, it is attempted to be inserted
in the gene. If the gene that is resulting is feasible, the vertex is inserted, and the
search continues. Else the search stops and the gene is returned. The chromosome
generation is again performed by iteratively calling the gene generation methods
until paths are generated for all the robots.



Chapter 6. Sample collection optimisation 84

To create the population, both chromosome generation procedures are repeated
until the specified amount of chromosomes is generated. Following their genera-
tion, the chromosomes are evaluated according to algorithm 6.9.

Algorithm 6.9 Chromosome Evaluation
Input: TravelCosts, Rewards,MaxCost

Output: Fitness
1: for each g ∈ Genes do
2: TwoOpt(g)
3: RemoveDuplicates(g)
4: GeneFit← GetReward(g)3/GetCost(g)
5: Fitness← Fitness+GeneFit

6: return Fitness

The fitness of each chromosome is defined as the sum of fitnesses of each gene
composing it. Each gene goes through a 2-Opt operation to minimise its cost. This
operation is a simple local search method that is based on swapping segments of
a path in hope of reducing the path’s cost. It is iteratively applied to all segment
combinations and stops if no improvement can be achieved. It was first presented
in [111] as a method to solve the travelling salesman problem. Then any duplicate
vertices that have been already visited by other genes are removed. Its fitness
is calculated as the total reward to the third power divided by the gene cost as
suggested in [70] for the single agent orienteering problem.

After the population generation is completed, a repetitive process is applied.
This process is applied until either the best chromosome is stable for ten gener-
ations or a maximum amount of generations is reached. This strategy is chosen
because if the chromosome is stable for long enough, it is either on a local maxi-
mum that is hard to escape or the global maximum has been reached. Either way,
given that the algorithm is used to be applied online, it is useful to stop early and
not waste resources.

The aforementioned repetitive process involves selecting a new population
based on the previous one. A percentage of the old population is passed to the
next generation without selection. This process is described in the literature as
Elitism and is known to speed up the performance and prevent loss of good solu-
tions during the search process [113]. The rest of the population is selected using
Tournament selection. This method starts with an empty population, then repet-



Chapter 6. Sample collection optimisation 85

itively chooses n random individuals from the previous population and adds the
fittest to the new population, until the maximum amount of individuals is chosen.

Following the new population selection, a crossover operation is performed to a
percentage of the population. The operation is presented in 6.10 and is a modified
version of the one presented in [112]. The crossover operation aims to diversify
the population and explore more of the search space.

Algorithm 6.10 Chromosome Crossover
Input: Parent1, Parent2
Output: Child1, Child2

1: SortGenes(Parent1)
2: SortGenes(Parent2)
3: for each i ∈ 1, 2 do
4: tP1 ← Parent1
5: tP2 ← Parent2
6: while GetNumGenes(Childi) < numRobots do
7: p ← SelectRandomParent(tP1, tP2)
8: InsertBestGene(Childi, p)

9: RemoveVertices(tP1, tP2)
10: EvaluateAndSortGenes(tP1, tP2)
11: EvaluateChromosome(Childi)

12: return Child1, Child2

For this operation to take place, two chromosomes are randomly chosen as the
parents of the crossover, and they are replaced by the two produced offsprings.
Initially, the genes of each parent are sorted by fitness. Then, the two children are
constructed iteratively. The first step of the iteration involves copies of the parents
to be created. Next, as long as the number of genes in each child is less than the
number of robots, the following process takes place. A parent is selected randomly,
and its best gene is removed and inserted to the child. Then, the vertices of this
gene are removed from any other genes of the temporary parents. After that, the
genes of the parents are re-evaluated and sorted based on their fitness. When
the maximum amount of genes is inserted in the child, it is accordingly evaluated.
After both offsprings are generated, they are returned in the place of their parents.

Continuing the population crossover, a percentage of the population is evolving
by mutating. This aims at attempting to improve the fitness of each gene that
composes the mutating chromosome and thus improve the fitness of the chromo-



Chapter 6. Sample collection optimisation 86

Algorithm 6.11 Chromosome Mutation
Input: Chromosome,MaxCost,NumMut,AddProb

Output: Chromosome
1: Genes← GetGenes(Chromosome)
2: for each g ∈ Genes do
3: for i← 1,NumMut do
4: p← GetRandom(0, 1)

5: if p ≤ AddProb then
6: if GetCost(g) ≥ 0.95 ∗MaxCost then
7: v ← SelectRandom(g, 1)

8: n← GetMaxFreeNeighbour(v)
9: gn← Replace(g, v, n)
10: if Fitness(g) ≤ Fitness(gn) then
11: g ← gn

12: else
13: if FV 6= [∅] then
14: v ← SelectRandom(FV, 1)

15: idx← FindBestInsertion(g, v)
16: Insert(g, v, idx)
17: else
18: v ← GetMinLossVertex(g)
19: g ← Remove(g, v)
20: EvaluateChromosome(Chromosome)
21: return Chromosome

some itself. The mutation process resembles the one presented in [110] and can
be seen in algorithm 6.11.

For each gene in the chromosome, a total number of NumMut mutations will
take place. In the case studied in this work NumMut was set to 10. A mutation
can happen in two ways, by either adding a vertex in the gene or by removing
one. This is governed by the AddProb probability and was set to be 0.9.

In the first case, there are two behaviours depending on the cost of the gene
that is mutated. If the cost is 95% of the maximum cost, an improvement of the
solution is attempted by swapping a vertex of the solution with one of its free
neighbours. A random vertex in the solution is chosen and is iteratively swapped
with all its free neighbours. The swap with the maximum improvement in the
gene’s fitness is kept as the performed mutation. This is done as it can be hard to
insert a new vertex in the solution without violating the cost constraints. In such



Chapter 6. Sample collection optimisation 87

a case it is preferable to try and improve the solution using a local search method.
In the second behaviour, a free vertex is randomly chosen. Then the best insertion
place is found in the path. It is consequently inserted if it does not violate the
maximum cost constraint. The best insertion is found using the heuristic value
described in the GRASP method in [82].

In the second case, where a removal is performed, the minimum loss vertex for
this gene’s fitness is found and removed. Likewise, with the insertion, the mini-
mum loss vertex is found using the same heuristic value. After all the NumMut

mutations happen for all the genes, the chromosome is evaluated using the method
already described and is returned.

After the number of generations reaches the maximum number or if the best
chromosome is stable for more than ten generations the algorithm stops and re-
turns the best chromosome found as a solution to the CTOP problem.

6.3 Experimental setup

As described before a sample collection mission requires one or more vehicles to
visit predefined sampling points over an area and collect samples. To evaluate
the performance of the proposed methods simulations are performed using areas
of various sizes. Each region consists of sampling points arranged in a grid. In
addition, there are specific starting and ending points. Moreover, each vehicle
is given a limited amount of energy to complete its tasks. The overall vehicles’
goal is to maximise the gained utility before reaching the energy threshold. To
solve the MIQP formulation the Gurobi 6.5 commercial solver [13] is used. The
GA heuristic method is implemented in C++11 and compiled using g++ version
5.3.0 on Ubuntu 14.04. The experiments are run on a 2.6GHz Intel Core i5-
3320M processor having 16GB of RAM. Following a method used to tune the GA
parameters for the CTOP case is presented.

6.3.1 Parameter tuning for genetic algorithms

As described before, a GA uses a set of parameters to manage its behaviour.
A tuning process is essential to find the best parameters for the algorithm. In
the literature, one can find methods for parameter tuning. In [114] the general
framework for parameter tuning is presented, and various methods are discussed.



Chapter 6. Sample collection optimisation 88

In the scope of this work a modified version of the work presented in [115] is used
to tune the parameters for the CTOP GA heuristic approach.

The parameter tuning method that is presented in [115] is based on an evo-
lutionary approach itself. It uses a chess rating system for evaluation. Each
chromosome in this method is represented by a vector of integer and real values
representing the set of parameters. To ensure that the tuned parameters are gen-
eralising well, each parameter set is tested against a set of problems. For tuning
the presented GA for the CTOP, twelve problem instances are created. They are
created by altering the problem size, the vertex distribution, and the number of
vehicles. Problem instances of 5x5, 7x7 and 9x9 are used. The vertices are dis-
tributed in a grid and a noisy grid form. The noisy grid is created based on the
canonical grid and adding some uniform random noise to the position of each ver-
tex. The number of vehicles is 3 and 5. The budget is set to 75% of the maximum
budget for all the problems. The rest of the approach is presented in algorithm
6.12.

Algorithm 6.12 CRS-Tuning algorithm
Input: Problems
Output: BestConfiguration
1: C ← InitialisePopulation
2: for trial← 1,MaxTrials do
3: for each c ∈ C do
4: for each pinProblems do
5: for ( dog ∈ 1,NumGames)
6: s ← GA(c, p)

7: Sc,p,g ← s

8: EvaluateConfigurations(C, S)
9: parents ← SelectParents(C)
10: newC ← GenerateNewPop(parents)
11: C ← newC

12: select BestConfiguration
13: return BestConfiguration

The first step of the tuning algorithm is to generate a population of chro-
mosomes. Each chromosome is constructed by randomly choosing values for the
parameters from a specified range. For the tuning procedure performed for this
work, the chromosome population is composed of 100 individuals. Then the algo-



Chapter 6. Sample collection optimisation 89

rithm iteratively runs for MaxTrials. For this work, MaxTrials are set to ten.
Initially, each configuration is used to run each problem NumGames times, and
their scores are recorded. Here NumGames is set to ten as well.

Following, the configurations are evaluated using the Glicko2 chess rating sys-
tem [116]. The evaluation is performed by each configuration comparing its results
against all the other configurations’ results and collecting 0, 0.5 and 1 points for
loss, draw and win respectively. These points, as well as the opponents rating,
are used to update the fitness of each configuration. In [115] the evaluation is
performed based only on the scores of the games. For the tuning performed here a
bonus of 0.1 is given to the faster solution, while the slower solution gets a penalty
of −0.1. This is done to differentiate the cases where two solutions are equally
good utility-wise, but one is slower to compute than the other.

The next step involves selecting the parents that will generate the next gen-
eration of configurations. The ten best configurations are selected as parents. In
addition to them, any other parents that performed close to the first ten are se-
lected as well. The choice is performed based on their chess rating intervals. The
parents have a maximum size of half the total population and are a portion of
the new population. The rest of the population is generated by applying uniform
crossover and mutation operations with 50% and 80% probability respectively, as
suggested by [115]. Finally, the best configuration is selected and returned.

6.4 Reuslts

The first set of results is presented in [110] and compares the performance of the
proposed GA heuristic with the MIQP solver for the COP. The GA parameters are
presented in table 6.1 and are set in an empirically way. The heuristic is evaluated
by comparing the expected accumulated utility and the planning time against the
exact solution. The mission performed is the same as the one previously described
in section 6.3.

The performance evaluation of the proposed heuristic method for the COP
required several tests to be run. The cost of movement is set to be directly
proportional to the distance that has to be travelled. Moreover, the vehicle incurs
a fixed sensing cost of one unit for each inspection point that was visited. As
mentioned in 2.2 the correlation between two points is represented by the kernel



Chapter 6. Sample collection optimisation 90

Table 6.1. Genetic algorithm parameters

Parameter Values
MaxGeneration 50
PopSize 200
TourSize 3
NumCrossovers 20
PopMut 50
CrMut 10
AddProb 0.9

function described in (2.8). For this work, the value of l is set to 2. This kernel
function is used to calculate a weight for equation (6.1). An example of the
maximum correlation range can be seen in figure 6.4.

The tests that are run involve two different runs of the MIQP solver. The first
is performed with 1% optimality gap, meaning that the output value is at most 1%
different from the optimal. The second is performed using a 5% gap. These are
used to limit the execution time of the MIQP to reasonable times. Additionally,
there is a maximum allowed amount of time that the solver is allowed to run, and
it is set to 36000 seconds.

Regarding the GA, 1000 trials are executed for each size and energy budget.
This is required since the GA approach is using randomness in the optimisation
process. Two consecutive runs of the GA optimisation are not guaranteed to give
the same result regarding utility or runtime; therefore, statistical results need to
be extracted.

As mentioned previously, a point of evaluation is the expected accumulated
utility of each method. To evaluate that five different grid sizes and four different
energy budgets are used. The energy budgets are computed by finding the optimal
path to traverse all the vertices using an OVRP instance [117]. To that, all the
necessary sensing costs for each vertex were added. The required budgets are
then calculated by reducing the maximum budged accordingly. The results of the
various tests can be seen in table 6.2.

As expected the 1% optimal MIQP instance usually performs better. The
heuristic performance can be mostly compared to the 5% MIQP solution. They
perform on average close. By examining the standard deviation of the heuristic,
it can be seen that it can find solutions close to the 1% optimal given enough



Chapter 6. Sample collection optimisation 91

Figure 6.4. Correlation range from inspection point 9. All the non-visited
points inside the blue circle contribute to correlation utility to point 9. This
represents the information we gain about the other points by sampling that
inspection point.



Chapter 6. Sample collection optimisation 92

Table 6.2. Utility gained for different grid sizes and budgets

Grid Size Algorithm Budget
100% 75% 50% 25%

5x5

COP 1% 24.554 20.771 14.725 7.108
COP 5% 24.377 20.216 14.571 7.108
GA 25 20.704 14.486 7.070
GA St.Dev. 0 0.087 0.287 0.090

6x6

COP 1% 35.554 30.056 21.633 10.771
COP 5% 35.377 30.017 21.364 10.771
GA 35.554 29.758 21.210 10.526
GA St.Dev. 0 0.144 0.281 0.323

7x7

COP 1% 48.554 41.81 30.304 15.079
COP 5% 47.285 41.418 29.849 15.079
GA 48.554 40.716 29.013 14.606
GA St.Dev. 0 0.389 0.422 0.311

8x8

COP 1% 63.377 54.426 39.828 20.095
COP 5% 62.754 54.165 39.343 20.095
GA 63.547 53.194 37.969 19.110
GA St.Dev. 0.053 0.413 0.549 0.64

9x9

COP 1% 80.377 69.666 51.207 25.835
COP 5% 79.662 67.804 50.244 25.835
GA 80.456 67.624 48.395 24.723
GA St.Dev. 0.226 0.474 0.791 0.719



Chapter 6. Sample collection optimisation 93

(a) MIQP problem solution for a 5x5
grid and energy budget of 38.25 units
(75% of maximum). The utility gath-
ered was 20.701.

(b) GA problem solution for a 5x5 grid
and energy budget of 38.25 units (75%
of maximum). The utility gathered was
20.704.

tries. In figure 6.5a the 1% optimal calculated path for a 5x5 grid with 75%
available energy can be seen. The blue colour represents the area coverage due to
correlation. The colour is darker closer to the actual sensed points and fades out
as the correlation drops. The heuristic solution for the same method can be seen
in figure 6.5b. They achieve the same utility. In terms of coverage quality, the
MIQP achieves to cover the whole area, while the GA performed better coverage
on the central part of the area. It should be noted that the GA gives a solution
similar to a standard lawnmower pattern used by vehicles in the field.

The second criterion of evaluation is path planning time. Given that it is
required for the vehicle to perform its mission autonomously it is essential that
the mission can be planned online and as fast as possible. The results can be seen
in table 6.3.

As it can be seen the proposed heuristic performs much better than the 1%
MIQP solutions by several orders of magnitude. It also outperforms the 5% gap
solution. That is even more visible in larger instances where again it is many
times faster. The execution time is ideal for online usage. Since the heuristic is
time-efficient, it can be run multiple times in order to find the best solution. This
solution, in many cases, will be close to the optimal, but in planning time it will
be orders of magnitude faster. The benefits of the heuristic will be even more
visible in lower-end or embedded processors used in many autonomous systems.

Before evaluating the heuristic for the CTOP, the genetic algorithm parameters



Chapter 6. Sample collection optimisation 94

Table 6.3. Computation time(s) for different grid sizes and budgets

Grid Size Algorithm Budget
100% 75% 50% 25%

5x5

COP 1% 1.381 5.118 14.981 1.257
COP 5% 0.514 3.664 7.979 1.076
GA 0.221 0.166 0.127 0.101
GA St.Dev. 0.03 0.013 0.013 0.014

6x6

COP 1% 34.745 13.118 389.658 22.541
COP 5% 0.898 1.559 70.983 9.001
GA 0.35 0.243 0.159 0.09
GA St.Dev. 0.06 0.028 0.017 0.005

7x7

COP 1% 2.42 190.585 2492 560.24
COP 5% 1.926 2.505 97.181 27.68
GA 0.785 0.411 0.207 0.103
GA St.Dev. 0.123 0.06 0.022 0.004

8x8

COP 1% 25.15 53.98 28965 5715.92
COP 5% 11.78 13.91 272.9 97.93
GA 1.042 0.636 0.298 0.129
GA St.Dev. 0.197 0.077 0.023 0.015

9x9

COP 1% 214.77 518.53 MAX MAX
COP 5% 92.247 23.041 865.83 408.81
GA 2.038 1.1 0.452 0.165
GA St.Dev. 0.361 0.147 0.052 0.017

are tuned with the method described in the previous section. The results of
the tuning can be seen in table 6.4. The numbers in the brackets represent the
allowable values for each parameter. The two next columns represent the value
used with the algorithm for each different population generation method.

The performance of the heuristic method is compared to the optimal solution in
two different ways. The first way examines how well the heuristic method performs
for different numbers of robots. For that, the maximum budget is allocated to
each robot. The maximum budget is calculated by taking the maximum budget
required for a single robot to complete the mission and dividing it by the number
of robots. The results can be seen in figure 6.6 and Table 6.5.

Figure 6.6 presents statistical results regarding the utility for each size of the
robotic team using the GA based planning. It is compared against a solution
produced by solving the MIQP problem using the Gurobi solver. The solver was



Chapter 6. Sample collection optimisation 95

Table 6.4. Parameter ranges and tuned values for the two different methods

Parameter Value Range Random NNRASP
Population Size [25, 50, . . . , 500] 300 250

Generations Number [5, 10, . . . , 50] 40 50

Tournament Size [3, 4, . . . , 10] 6 5

CX Probability [0.0, 0.1, . . . , 0.9] 0.7 0.9

Mutation Probability [0.0, 0.1, . . . , 0.9] 0.6 0.7

Elitist Percentage [0.01, 0.02, . . . , 0.20] 0.19 0.03

Figure 6.6. Utility box plots for different numbers of robots. For lower
number of robots a sophisticated population initialisation method tends to
give better results. As the number goes higher the results come closer with a
slight superiority of the NNRASP method. The blue line represents the 5%
gap optimal solution obtained by solving the MIQP problem.



Chapter 6. Sample collection optimisation 96

Table 6.5. Average time(s) for different algorithms and vehicle numbers

Algorithm Number of Robots
2 3 4 5

CTOP 5% 396.36 695.60 2830.41 1474.18
GA-Random 0.787703 0.729135 0.666236 0.623074
St.Dev. 0.087695 0.0738167 0.0602966 0.0579891
GA-NNRASP 0.792475 0.844305 0.817855 0.826688
St.Dev. 0.106818 0.120596 0.112062 0.106136

stopped once the found solution was guaranteed to be at most 5% worse than
optimal. The horizontal blue line represents this solution. It can be seen that
the GA heuristic with the NNRASP generation method outperforms the MIQP
solution in all the cases. The random generation method falls a bit behind, with
part of the results produced being worse than the 5% optimal.

Comparing the average planning time the GA heuristic heavily outperforms
the MIQP exact method, as it can be seen in Table 6.5. It can be seen that the
time required for the optimal solution is in the best case 500 times higher. The
GA-Random method performed slightly better than the GA-NNRASP. Example
paths for a three-robot team can be seen in figures 6.8a, 6.8b and 6.8c. The first
figure shows the 1% optimal path calculated by the MIQP solver, while the second
is a 5% optimal solution used for comparison with the GA. The heuristic solution
can be seen in the third image. It is obvious that the solution quality of the GA
is far better than the 5% optimal.

The second performance metric examines how the heuristic method performs
in cases where the budget is limited. For this, the number of vehicles is chosen
to be three and is kept static. Then the budget of each vehicle is reduced by a
specific percentage. Figure 6.7 and table 6.6 present the results for this metric.

In figure 6.7 the utility gained for each budget is shown. It can be seen that
the GA method performs at least equally good as the 5% exact method. That
happened only in the case where the robots had 25% of the maximum energy.
In all the other cases the GA performed better. Comparing the two different
population generation methods, one can see that the more sophisticated approach
gives statistically better results. The random method performs close to the 5%
optimal.



Chapter 6. Sample collection optimisation 97

Figure 6.7. Utility box plots for three robots having different budget. For
lower budgets a sophisticated population initialisation performs equally good
with the random one. As the budget goes higher the results show the benefits
of the NNRASP method. The blue line represents the 5% gap optimal solution
obtained by solving the MIQP problem.

(a) 1% optimal MIQP solu-
tion.

(b) 5% optimal MIQP solu-
tion.

(c) Genetic algorithm based
heuristic solution.

Figure 6.8. Comparison of the paths generated for three vehicles having
full budget. In 6.8a the gathered utility is 79.662 and the time to calculate
is 5847.81 seconds. In 6.8b the gathered utility is 76.433 and the time to
calculate is 690.74 seconds. In 6.8c the gathered utility is 78.770 and the time
to calculate is 0.8597 seconds.



Chapter 6. Sample collection optimisation 98

Table 6.6. Average time(s) for different algorithms and different budgets

Algorithm Budget
100% 75% 50% 25%

CTOP 5% 695.60 267.94 3611.76 3764.12
GA-RANDOM 0.721606 0.625391 0.362355 0.141678
St.Dev. 0.0742465 0.0607859 0.0346406 0.0147053
GA-NNRASP 0.837791 0.763285 0.389283 0.165087
St.Dev. 0.120398 0.102063 0.0483728 0.0244343

In table 6.6 the timing results of the limited budget experiments are presented.
As with all the previous cases, the GA-Random method performed better. In the
worst case, it was more than 300 times faster than the 5% MIQP solution. The GA
with NNRASP population generation method constantly performed a bit slower
than the Random generation method.

6.5 Summary

This chapter presented the concept of a sensing mission under budget constraints
along with solution methods depending on the mission characteristics and the
number of vehicles. Exact solutions for the COP and CTOP problems were pre-
sented using MIQP formulations. GA based heuristics were presented to achieve
close to optimal online execution. Simulated sampling missions of various sizes
were used to verify the correctness of the approaches. For both the single and the
multi-vehicle approaches the heuristics produced solutions that were close to op-
timal requiring only a fraction of the computational resources compared with the
MIQP solution. This makes the heuristic methods applicable in online settings.
The next chapter will present a novel approach for long range mission optimisation
that combines methods from both chapters 5 and 6.



Chapter 7

Large scale sensing missions

In chapter 6 the problem of optimising sensing missions was discussed. Solution
methods for single and multiple vehicle teams operating under budget constraints
were presented. These methods allowed the online optimisation of the sensing
missions.

The current chapter studies larger sensing missions than the ones presented
in chapter 6. In particular, it studies missions where multiple regions need to be
visited for samples to be collected. Given the problem size only multiple vehicle
teams are considered. As in the single region problems, the multi-region problem
is also studied under budget constraints.

In the rest of the chapter, the problem will be described in detail, and a pro-
posed solution method will be provided. The proposed method is tested against
the multi-vehicle method and results will be accordingly presented. Finally, con-
clusions on the proposed approach will be discussed.

7.1 Problem setting

The problem addressed in this chapter is the one of multi-region sampling, as
briefly mentioned before. In this problem multiple regions of interest, for example,
pollution spots, need to be sampled over a larger area. Each of those regions can
vary in size, and their size may change over time. An example of such a problem
can be seen in figure 7.1.

For solving this problem one or multiple robots can be employed. Given the
size of the problem, a multi-vehicle approach would provide robustness and speed
to the problem solution, as regions can be sampled in parallel and vehicle failures

99



Chapter 7. Large scale sensing missions 100

Figure 7.1. 2-level mission performed by two vehicles. The high-level op-
timisation optimises the way the regions are visited. This is represented by
the black vertices connected by blue lines. The grey vertices are the sampling
points that need to be visited. There a solution to the COP is found using
the GA heuristic.

would not compromise the execution. As with the problem described in chapter
6, the robots will be operating in a dynamic environment. This can have an effect
on the available resources for completing the mission. Therefore, this problem
is also studied under the prism of resource or budget constraints. As with the
problems studied in chapter 5 the regions to be sampled can be known at the
beginning of the mission or be discovered dynamically during mission execution.
In any case, a heterogeneous team would be ideal for solving the studied problem.
Specifically, there could be one or more vehicles discovering regions that need to
be sampled while other team members would proceed to collect the samples from
those regions.

The current state of the art, presented in [118], focuses on a single region
that needs to be sampled. Though it can be directly applied to the multi-region
problem, its solution procedure may prevent it from being applied in real-world
applications. The solution method of [118] is a centralised method that produces
the path that each vehicle of the team should follow in order to maximise the
sampling output. This centralised approach makes it reliant on communicating
all the relevant information to a single processing node, which in turn will have to
send the results to the vehicles in order to execute the mission. This approach can



Chapter 7. Large scale sensing missions 101

be hard to apply in cases where communication is unreliable and of low bandwidth,
such as an underwater environment. In addition, the current method can not be
applied in a decentralised manner, as its randomised search nature would create a
different global plan each time it would be run, creating inconsistencies that could
potentially reduce the outcome of the mission. To overcome the aforementioned
issues, a new method that combines the optimal allocation described in chapter 5
with the close to optimal trajectory generation of chapter 6 is presented.

7.2 Two level optimisation

As already mentioned, a new method is proposed to allow optimised sensing mis-
sions that require samples to be collected over multiple regions. The proposed
approach consists of two levels of optimisation.

The first level of optimisation aims at producing a consistent global plan among
all the agents. This global plan represents which regions should be sampled by
each vehicle, as well as the order to visit those regions. The solution for this plan is
obtained by solving an MDmTSP instance as the one presented in chapter 5. Each
vehicle is represented as a depot of the problem, having one extra depot as the
final point where all the vehicles should reach after the completion of the mission.
The rest of the nodes represent the centres of the regions that need to be sampled.
The MDmTSP solution will give a schedule for each vehicle. Each schedule will
have one or more regions to be visited, in addition to the initial position of the
vehicle and the final position. In case that there are fewer regions than vehicles,
the problem is infeasible. In such cases, an exhaustive search method can produce
an optimal solution.

This type of optimisation can be performed in a distributed fashion, as the
optimisation method is deterministic and is guaranteed to give the same result
each time that is run with the same parameters. This behaviour was also veri-
fied in section 5.5.2 where multiple vehicles executed an inspection mission in a
distributed manner even in the presence of communication errors.



Chapter 7. Large scale sensing missions 102

7.3 Budget calculation

One of the essential aspects when optimising large scale sensing missions under
budget constraints is how to distribute the budget among the regions that need
to be sampled. This section will describe the process of calculating the available
budget and how it is then allocated in each region.

As mentioned in section 7.2 the optimisation process is performed in two levels.
In the first level, the optimal plan on how to visit the sampling regions is generated.
This optimal plan is computed by representing each sampling region by its central
point. The result of the optimisation is a number of paths equal to the number
of vehicles. Each of these paths is represented by a vector containing a number of
these central points in the order that they should be visited.

The next step is to compute the travelling cost spent while moving between
the regions. The path cost that is computed by the high-level optimisation does
not represent the actual travelling cost between the regions. This is because it
is computed based on the centre points of the regions. In reality, the robot will
collect samples from the whole region so it will move from the side of one region to
the other. This means that the actual travelling cost will be less and more budget
will be available for sampling. Therefore, each robot must know the exact cost to
be able to calculate the amount of budget that can be allocated to sampling.

In figure 7.2 one can see two sampling regions. Their connected centres are
what the high-level optimisation is producing. As can be seen, the line connecting
the centres is intersecting with the sides of the two regions. One can calculate
the intersection point and find the closest sampling point to that. This way the
starting and ending points of the sampling regions can be calculated. It must be
mentioned that this is applied to rectangular shaped regions that are axis aligned.
Such regions are in the scope of this work.

As briefly mentioned in the previous paragraph, the starting point will be one
of the sampling vertices of the region. Specifically, this vertex will be on the side
that is intersected by the line that connects the centre of the region with the centre
of the previous region as given by the top level planning. To calculate the starting
point of a region one can employ simple algebraic operations. Firstly, the gradient
of the line ml connecting the two centres must be calculated. This can be done by
using the gradient equation as shown in equation (7.1). The second step involves



Chapter 7. Large scale sensing missions 103

Figure 7.2. Two sampling regions and a line that connects their centres. This
line is the output of the top level planning. While the mission is executed the
vehicle will exit region A from a sampling point and will enter region B at a
sampling point.

computing the gradient of the diagonals m1
d and m2

d of the region. This is done
using the same equation and the region’s corner points. The region along with the
diagonals and the line connecting the centre can be seen in figure 7.3a.

m =
∆y

∆x
=
yB − yA

xB − xA

(7.1)

To find which side of the region is intersected by the line one can compare the
absolute value of the gradient ml with the absolute values of m1

d and m2
d. In the

case of rectangular shaped regions studied here one can assume that | m1
d |=| m2

d |.
This comparison gives three intersection cases. In the first case, the absolute value
of the centre line gradient is less than the absolute value of the diagonal gradient.
In that case, it intersects either the front or the back of the region. To determine
which side is intersected one can use the ∆x component of the gradient. If ∆x > 0

it intersects the back of the region, while when ∆x < 0 it intersects the front. The
second case is defined when | ml |>| md |. This denotes that the line connecting



Chapter 7. Large scale sensing missions 104

(a) (b)

Figure 7.3. Calculation of the starting sampling point. In figure 7.3a one can
see the red diagonals of the area that are used to find the intersection with the
line connected to the centre. The candidate starting points for region B can
be seen in figure 7.3b. The closest points to the line are marked by numbers
3 and 4.

the centres intersects the top or the bottom of the region. The side is determined
by the sign of the ∆y component of the gradient. If it is positive, it intersects the
bottom side, and if it is negative, the top is intersected. The final case is when ml

is equal to md. Then the intersection is one of the corners of the region. Which
corner can be defined by the values of ∆x and ∆y of the centre connecting line
gradient.

In the example case of figure 7.2, the line connecting the centres has a gradient
with an absolute value smaller than the absolute value of the gradient of the
diagonals as seen in figure 7.3a. This means that it would intersect the back or
the front of the region. Given that ∆x is positive, one can find that the back side
is intersected.

The next step is to find the intersection point between the line and the side.
This can be done by solving the linear equation system of the two lines. To
determine which sampling points are the closest to the intersection point one can
use the floor and ceiling functions. In the example of figure 7.3b the intersection is
on the back of the region. In both the sampling points the value of x is the same.
By applying the floor and ceiling functions to the y coordinate of the intersection
point, one can get the y coordinates of the closest sampling points, namely points
three and four.



Chapter 7. Large scale sensing missions 105

(a) (b)

Figure 7.4. Calculation of the finishing point. The diagonals that help
identify the side of the region the point is are can be seen in figure 7.4a as
red lines. The candidates of the finishing point are vertices numbered 1 and
2 and can be seen in figure 7.4b.

An equivalent method can be followed for finding the end point of the region.
The only difference is how the decision is made on the intersecting side. When
the front or the back of the region is intersected the ∆x is still used. However in
this case, when ∆x > 0 then the front is intersected. Accordingly when ∆x < 0

the back is intersected. Likewise, for the top-bottom case, when ∆y > 0 the top
side is intersected. For ∆y < 0 the line intersects the bottom side. In the example
presented in figure 7.4a one can see that the absolute value of the gradient of the
line is higher than the absolute value of the gradient of the diagonals. Therefore,
the intersection happens on either the top or the bottom of the region. Since
∆y > 0 the top side is intersected. Calculating the closest sampling points to the
intersection gives points one and two as seen in figure 7.4b.

To find the path that connects the two regions, and the starting and ending
points respectively, an exhaustive search is possible. In figure 7.5 the four candi-
dates can be seen on the edges of the regions. An exhaustive search would involve
four comparisons. It can be seen that the closest points are two and four. Thus,
point two will be the ending point for region A, while point four will be the start-
ing point for region B. The cost of travelling from region A to region B will be
the length of the path from point two to point four. It can be seen that the cost
is much lower than the one used from the top level planning.

When all the starting and ending points for each region are found, the actual
cost of travelling can be calculated. This cost is then subtracted from the available
budget. The remaining budget is what can be used for sampling. The remaining



Chapter 7. Large scale sensing missions 106

Figure 7.5. The ending (1,2) and starting (3,4) candidates for the two sam-
pling regions. With a simple search strategy, one can find the closest distance
using at most four comparisons. In this example it is obvious that the shortest
distance is between vertices 2 and 4, making them the finishing and starting
vertices of regions A and B respectively.

budget is allocated proportionally to the sampling regions. Each region gets a
percentage of the budget based on its size. The total amount of sampling points is
calculated. A percentage is then computed for each region by dividing the number
of sampling points of the region by the total amount of points. Multiplying this
with the remaining budget gives the budget that can be spent on sampling in each
region.

7.4 Experimental setup

To test the effectiveness of the two-level planning method an experimental pro-
cedure needs to be employed. The testing procedure consists of a long-range
sampling mission. In that mission, multiple regions need to be sampled by a team
of vehicles. As in the results presented in chapter 6, the evaluation is performed
on two criteria, namely the utility of the plan of each method and the time it took
to generate the plan.



Chapter 7. Large scale sensing missions 107

To evaluate the methods in a generalised manner, random missions are used.
In these missions, the sampling regions are randomly generated over a large area.
Evaluation is performed over a large number of missions, and statistical results
are extracted. This section presents the methods used to generate the missions
and how the results are collected.

7.4.1 Random mission generation

As already mentioned, the two methods are tested using randomly generated mis-
sions. In this mission sampling regions are randomly generated over a larger area.
These sampling regions can be described by their centre point, their width and
their length.

In general, a random point pattern in a d-dimensional space is described by a
spatial point process[119]. Usually in applications d = 1, d = 2 or d = 3. One-
dimensional processes can be used to model event occurrences over time, while
two or three-dimensional processes can be used to model event occurrences over
space. Spatial processes have a wide variety of application over different disciplines
of science. For example in statistical ecology [120], [121] they are used to model
locations of trees or bird nests. In astrostatistics [122] they model the positions
of stars and galaxies, while in material science [123] they model defects in silicon
crystal wafers. Finally, in statistical epidemiology, they model the addresses of
people diagnosed with a specific disease. [124].

A particular case of a spatial point process is the spatial Poisson process. In
the Poisson process, the number of points in an area A is following a Poisson
distribution with mean βλ2(A). Here β is the intensity of the process governing
the number of points per unit area, while λ2(A) is the area size of A. In the case
studied by this work, the Poisson process is used to generate the centre points
of the sampling regions that are spread over the larger area that is studied. The
process that is used to generate a mission can be seen in algorithm 7.1.

The algorithm starts by calculating the percentage of the area that is covered
by regions that need to be sampled. This can be expressed as the total number of
sampling points. This is done by calculating the size of the area and multiplying
it with the coverage percentage of it. The approach followed here assumes that
the large area can be represented as a grid where sampling points can be placed.



Chapter 7. Large scale sensing missions 108

Algorithm 7.1 Random Problem Generation
Input: AreaWidth,AreaLength,AverageRegionSize, CoveragePercentage,

MinRegionsNumber

Output: SamplingRegions
1: NumNodes← AreaLength ∗ AreaWidth ∗ CoveragePercentage
2: MeanRegionNum← NumNodes/AverageRegionSize

3: NumRegions← SamplePoisson(MeanRegionNum)

4: if NumRegions < MinRegionsNumber then
5: NumRegions←MinRegionsNumber

6: while NumRegions > 0 do
7: RegionCentrex ← SampleUniform(1,AreaWidth)

8: RegionCentrey ← SampleUniform(1,AreaLength)

9: RegionSize← SampleNormal(AverageRegionSize, 1)
10: RegionSize← Round(RegionSize)
11: NSA← Samplingregion(RegionCentrex, RegionCentrey, RegionSize)

12: if ¬Overlaps(NSA, Samplingregions) then
13: Insert(Samplingregions,NSA)
14: NumRegions← NumRegions− 1

15: return Samplingregions

In the next step, the mean number of sampling regions is computed by dividing
the number of nodes by the average sampling region size. Following, the actual
number of sampling regions present in the problem is sampled from a Poisson
distribution with µ = MeanRegionNum. If the number of sampling regions is
less than a user-defined threshold, then it is replaced by that threshold. This was
done to avoid cases where the number of regions is less than the agents making
the whole problem trivial to solve.

After the number of sampling regions is decided a repetitive process to generate
them begins. The first step in that process requires the centre of the sampling
region to be randomly generated. This is performed by sampling from a uniform
distribution over the width and the length of the larger area. Next, the sampling
region size is determined by randomly generating a size from a normal distribution
with µ = AverageRegionSize and σ = 1. Finally, if the region is not overlapping
with any of the already generated regions is inserted to the regions set. After all
the regions are generated they are returned so that the mission can be optimised.



Chapter 7. Large scale sensing missions 109

7.4.2 Experimental procedure

Given that both methods use stochastic optimisation processes, only statistical
results regarding their performance can be collected. Therefore, multiple missions
are generated using the procedure described in the previous section. The evalua-
tion is performed in terms of utility and time to compute a solution using three
different tests. The first test evaluates the scaling of the method to various per-
centages of area coverage. The number of robots is set to three and the maximum
budget is allocated. Then the coverage percentage of the area is having values
of 10%, 15% and 20%. The second test evaluates the performance in cases of a
limited budget. The number of robots is still three, while the coverage percentage
is set to 10%. Then the maximum available budget takes values of 100%, 75% and
50% of the maximum budget. The final test examines the scaling of the method
to various sizes of robot teams. In that case, the maximum budget is allocated,
and the area coverage is still at 10%. The number of robots is then getting values
of 2, 3 or 4 robots.

As already seen the generation method creates random missions that differ
in size. Consequently, a direct comparison of the utility and time cannot be
performed. For that, the metrics are normalised on the number of nodes. So a
comparison is performed on the utility per node and the computation time per
node. Another issue that arises because of the random mission generation is the
one of the maximum budget available for performing the mission. To calculate
the maximum budget, a simple heuristic is used. In that heuristic, the cost of
sampling each region is calculated using an OVRP instance as described in the
results of the COP in chapter 6. Then the high-level optimisation is performed,
and the cost of travelling to the centres of all the regions is calculated. Finally, the
maximum budget for the team is computing by adding all these costs together.
This budget is then divided equally among the agents.

7.5 Results

This section presents the results of the experimental procedure presented before.
For each testing case, 500 experiments were run, and statistical results are ex-
tracted. The parameters used to generate the random problems are shown in



Chapter 7. Large scale sensing missions 110

table 7.1. The parameters for the genetic algorithm heuristics of the COP and
CTOP are the same as the ones used for obtaining the results of 6.

Table 7.1. Genetic algorithm parameters

Parameter Values
AreaWidth 100

AreaLength 100

AverageRegionSize 9

MinRegionsNumber 2 ∗NumRobots

The first experiment is checking how is the 2-level method performing com-
pared to the CTOP for different problem sizes. For this, the maximum budget
was allocated, and three robots were used. Results for this can be seen in figures
7.6a and 7.6b.

(a) Utility boxplots for different area cov-
erage percentages. The 2-level method per-
forms constantly close to the optimal. The
CTOP performance is worse and reduces as
the coverage increases.

(b) Time boxplots for different area cov-
erage percentages. The 2-level has a con-
stant behaviour that is always better than
the CTOP. The CTOP requires more time
as the coverage increases.

Figure 7.6. Utility and time boxplots for different area coverage percentages.
Three vehicles were used and the maximum budget was available.

Figure 7.6a presents the utility obtained per sampling point. It can be seen
that the 2-level method consistently performs close to the optimal not getting
influenced by the size. On the other hand, the CTOP method performs constantly
worse than the 2-level method. In addition, the CTOP performance degrades as
the area size increases. A possible cause of that is that it is stuck into local optima
and does not have enough time to find a solution that will escape it.

Regarding the time required to find a solution, the 2-level behaviour performs



Chapter 7. Large scale sensing missions 111

really well. It can be seen in figure 7.6b that it requires constant time per sampling
point, while the 0.02 seconds per point make it applicable online. It additionally
outperforms the CTOP by at least a factor of 3. The CTOP is consistently
performing worse, and its computational complexity appears to be linear to the
coverage percentage.

The second experiment examines how the 2-level method performs in cases of
a reduced budget. The number of vehicles is still three, while 10% of the total area
is sampled. Results regarding the utility gathered and the total time to compute
a plan are shown in figures 7.7a and 7.7b respectively.

(a) Utility boxplots for different budgets.
The 2-level method performs better than
the CTOP in most cases. The CTOP per-
formance is usually worse.

(b) Time boxplots for different budgets.
For both cases the time requirements in-
crease as the budget increases. The 2-level
method performs better than the CTOP.

Figure 7.7. Utility and time boxplots for different budgets. Three vehicles
were used and the area coverage was 10%.

Regarding the gathered utility per sampling point, the 2-level approach still
outperforms the CTOP as seen in figure 7.7a. In cases of 100% and 75% of the
budget, it clearly performs better. In the case where 50% of the budget is available,
the performance of the two methods converges with the 2-level performing better
on 75% of the cases. In some outlier cases, it performs much worse. This can be
caused by an uneven distribution of points among the vehicles. Since the high-
level optimisation only considers the centres of the sampling regions and not their
size, there can be cases where one vehicle gets the majority of the points and will
not have enough budget to visit most of them. To solve such a case, the load
of each vehicle can be checked, and a heuristic can be employed to improve the
situation. For example, it can try to split one area into smaller areas or try to
assign the area to another vehicle.



Chapter 7. Large scale sensing missions 112

In figure 7.7b the collected results regarding the time are presented. The 2-level
method still outperforms the CTOP by again at least a factor of 3. It should be
noted that both the methods appear to scale linearly with the amount of budget.

The final experiment considers the performance of the 2-level method in teams
of various sizes. For that, the budget is set to the maximum available, and the
coverage is kept to 10%. The vehicle number varies from 2 to 4. The results can
be seen in figures 7.8a and 7.8b.

(a) Utility boxplots for different team sizes.
The 2-level method performs constantly
close to optimal and better than the CTOP.
The CTOP performance worse and de-
grades as the team size increases.

(b) Time boxplots for different team sizes.
The 2-level has a constant behaviour that is
always better than the CTOP. The CTOP
requires less time as the team size increases.

Figure 7.8. Utility and time boxplots for different team sizes. The area
coverage was 10% and the maximum budget was available.

The results for the gathered utility can be seen in figure 7.8a. The 2-level ap-
proach clearly outperforms the CTOP in all the cases. Again it has a performance
close to the optimal as each of the sampled vertices contributes almost 1 unit of
reward. The CTOP performance appears to be linearly decreasing to the number
of vehicles. This is probably due to the local minima that the solution is stuck to
as it tries to optimise more paths with less budget per path.

The time requirement results can be seen in figure 7.8b. The 2-level proposed
approach still has constant time requirements with the number of vehicles. In
addition, it performs at least 3 times better than the CTOP. The time requirements
per visited sampling point are lower as the number of vehicles increases. One
can hypothesise that as the number of vehicles increases, the budget per vehicle
is reduced, and the smaller paths reduce the computational efforts of the GA
operations.



Chapter 7. Large scale sensing missions 113

7.6 Summary

This chapter presented an approach for optimising long range sampling missions
where many regions need to be sampled over a larger area. It combines the meth-
ods presented in chapters 5 and 6 allowing multi-vehicle sampling missions to be
performed. Compared with the CTOP heuristic that is already used to optimise
sampling missions for multiple teams it performs better both in terms of utility
and computational time. It can achieve close to optimal performance while having
constant execution time in many cases. The next chapter will conclude this work
and provide recommendations for potential directions for future research on the
topic.



Chapter 8

Conclusion and Future Work

This work presented novel approaches for optimising robotic missions executed
by a team of robots that operates under communication or budget constraints.
The approaches can extend the capabilities of a robotic team as they can allow
missions to be executed faster or within specific resource limits. The presented
methods were implemented and tested both in simulation and on real vehicles. The
acquired results validate the approaches and highlight the benefits of their usage
in various scenarios. Inspection task optimisation can reduce the execution time
of a mission allowing more missions to be performed. Sampling task optimisation
can maximise the information gathering especially in cases where the budget is
constrained.

The proposed approaches address the three main questions presented at the
beginning of this work. Namely, they are addressing the following:

• How to address the multi-robot task allocation problem under communica-
tion constraints?

• How to optimise mission performance for sampling tasks under budget con-
straints in an online manner?

The first question is addressed by using an information-sharing framework that
is robust to communication failures. The use of such a framework ensures the in-
formation flow among the members of the team. By maintaining a consistent view
of the world, the team members can plan their actions accordingly allowing for
optimised mission execution. To optimise the team’s behaviour during inspec-
tion tasks, methods from the field of optimisation were accordingly modified and

114



Chapter 8. Conclusion and Future Work 115

integrated with the aforementioned information sharing framework. Their combi-
nation allowed for a decentralised approach to the MRTA that can have optimal
performance even in high communication error rates.

Regarding the second question, there were approaches in the literature that
addressed the sampling problem under the presence of budget constraints. Their
computational complexity made their online use prohibitive, rendering them inap-
plicable in dynamic environments. The introduction of heuristic solutions allowed
the methods to be run online. These heuristic solutions performed close to opti-
mal using a fraction of the computational resources. This can allow the mission
to be adapted online taking into account all the new information regarding the
environment and the vehicles budget consumption.

Given the results, it has been shown that it is possible to optimise a robotic
mission despite and constraints. The information sharing framework can address
failures in communication in a reliable way. The MRTA problem can be solved
reliably and close to optimal by using such a communication framework. The
sampling mission problem can be addressed online even in cases where processing
power is low. Combining the MRTA for the inspection task optimisation with the
online heuristics for the sampling tasks it was possible to propose a novel method
for optimising long-range sensing missions. These advancements allow the robotic
team to autonomously plan and perform missions that can be adapted on the
fly in case of disturbances allowing prolonged deployments with close to optimal
results.

8.1 Major findings

The experimental validation of the proposed approaches gave enough data to show
the benefits of them. Following is a list highlighting each one of them:

1. The presence of reliable communications is important in solving the MRTA
problem. This is especially true if a decentralised approach is attempted.
Having outdated information regarding the status of the team can lead to
suboptimal performance. Therefore, combining a framework that ensures
communication reliability with optimisation techniques increase the proba-
bility of optimal performance from the team. The study of [6] also confirmed
this.



Chapter 8. Conclusion and Future Work 116

2. Heuristics can be valuable assistants to solve hard problems. In the real
world, it is usually preferable to find a good enough solution fast and update
it during execution as more data is available. This can lead to better results
than cases where the optimal solution cannot be computed online due to
computation costs. Preliminary results on the topic can be found in [125].

3. The combination of various methods is required for prolonged autonomy to
be possible. Optimisation can be achieved in various levels leading to close
to optimal decentralised applications. Close to optimal performance can, in
turn, increase the output of missions making the robotic teams an even more
valuable asset.

Despite focusing the application to underwater scenarios, it is strongly believed
that this research is relevant to any branch of field or service robotics. Be it
surface, land or airborne vehicles optimised performance is a crucial aspect in
their success. Robust and optimised behaviour can, in turn, lead to a broader
adoption form other fields of scientific research giving even more benefits to the
scientific community and society in general.

8.2 Future work

Despite the findings and proved performance of the proposed approaches, vari-
ous aspects have been identified as targets for potential improvement and exten-
sions. They are related to both the information sharing framework, the MRTA
approaches and the sampling mission optimisation. Following is a list highlighting
some of them:

1. The current implementation of the information sharing framework can be
hard to scale for a large team. It is based on a TDMA MAC approach
limiting the effective bandwidth quite substantially. A newer networking
architecture would benefit the incorporation of such frameworks in larger
teams. Initial exploration on the subject was performed in [126] and showed
the benefits of other MAC protocols. Further investigation is required so
that a new framework can be developed.

2. Currently, the information sharing framework has static definitions regarding
which information is to be shared and its priority. In real life, information



Chapter 8. Conclusion and Future Work 117

value changes based on the evolution of the mission. Given that the infor-
mation sharing network has access to all the semantic information present
on a vehicle it can use it to infer which information is relevant to which
vehicles and if it is worthy to transmit that piece of information. This would
reduce the bandwidth requirements as only important information would be
transmitted.

3. Regarding the MRTA approach that is proposed in this work it would be
beneficial to compare it against other optimisation methods. For example, a
MinMax approach that would minimise the maximum effort of an agent may
yield better results. Additionally, the approach should be extended towards
heterogeneous and time-extended tasks. The current scheme considers only
tasks that are the same and have the same value and requirements to be
performed. In the real world, on the other hand, tasks usually have quite
individual characteristics making them hard to be solvable equally good by
each available robot. This would extend the applicability of the approach in
more domains.

4. Regarding the sampling mission optimisation the current approach assumes
that the characteristics of the area to be sampled are known beforehand.
In many real-world situations, this is not the case. An initial exploration
strategy could be devised in order to learn the characteristics of the phe-
nomenon and then a full optimisation can be performed. Moreover, in the
current approach, all the sampling points have equal importance. A learning
method could be used to assess the importance of each sampling point over
an extended period. This could lead to further optimisation of the sampling
strategy. It could also allow optimised data gathering over long periods
helping monitor time-varying phenomena.

8.3 Summary

The work presented in this thesis proposed and validated novel approaches for op-
timising inspection and sensing missions undertaken by a team of robots. These
approaches target cases where there is a limitation in the team’s communication
capabilities, as well as, in the team’s mission execution budget. The proposed



Chapter 8. Conclusion and Future Work 118

approaches can optimise missions in an online manner allowing the use in au-
tonomous platforms. In addition, this work has identified potential extensions
of it regarding the networking protocols it uses, its information communication
strategy, its task allocation methods and the parameters of the sampling strategy
that is used. These improvements have the potential to extend the autonomy to
larger teams of robots performing persistent monitoring scenarios.



Appendices

119



Appendix A

On optimisation

This thesis studies the optimisation of the behaviour and performance of teams
of robots with an application to underwater vehicles. This chapter acts as an
introduction to optimisation, aiming to present to the reader useful methods and
concepts that will be used in the following chapters. This will be done by pre-
senting one of the most famous optimisation problem in the literature, as well as
solution methods that were introduced over the years.

A.1 The travelling salesman problem

The Travelling Salesman Problem (TSP) is one of the classic optimisation prob-
lems presented in the literature. It has drawn much attention since the 1950s and
was the main force leading the research in the field of Operational Research (OR)
generating methods to solve multiple optimisation problems in the real world.

In this is problem, there is a single agent, called the salesman, who wants to
visit a set of vertices. This agent can represent a vehicle, whose path needs to
be optimised. The vertices that need to be visited are representing cities in the
TSP or points for making sensor measurements in the vehicle case. Aim of the
salesman is to visit all the cities following a path with the minimum travelling
distance or cost.

The salesman is starting his route form a specific city and must finish his path
in that city. This way a cyclic route is formed starting and ending on the same
city. In the vehicle case that city is the starting point of the mission where the
vehicle is deployed, and from where it will be recovered after the mission end. A
sample solution for such a problem can be seen in figure A.1.

120



Appendix A. On optimisation 121

−60 −40 −20 0 20 40 60

X (m)

−40

−20

0

20

40
Y
 (
m
)

0

1

2

3 4

5

6

7

8

91011

12

13

14

15

16

17

18

19

20

Problem Solution

nodes
route #0

Figure A.1. Solution to a randomly generated TSP instance. 20 cities were
randomly selected in an area of 100 by 100 units. The total cost of the route
is 409.251 units. The route starts and ends at the leftmost city.

The solution to any TSP problem can be described as a minimisation problem
satisfying a set of constraints. An Integer Linear Programming (ILP) formulation
of the problem was first presented in [127] and is accordingly presented.

min
n∑

i=0

n∑
j 6=i,j=0

cijxij (A.1)

s.t. 0 ≤ xij ≤ 1 i, j = 0, ..., n (A.2)

ui ∈ Z+
0 i = 0, ..., n (A.3)

n∑
i=0,i 6=j

xij = 1 j = 0, ..., n (A.4)

n∑
j=0,j 6=i

xij = 1 i = 0, ..., n (A.5)

ui − uj + nxij ≤ n− 1 1 ≤ i 6= j ≤ n (A.6)

The objective function that is minimised can be seen in (A.1). Variable xij

is used to denote the existence of a path from vertex i to vertex j. Variable cij



Appendix A. On optimisation 122

represents the cost to travel between vertices i and j. In the general case of the
TSP, the travelling cost is assumed to be symmetric, meaning that the cost to
travel from vertex i to vertex j is the same as to travel from vertex j to vertex i.
Over the years solutions have also appeared for the asymmetric TSP, for example
in [128].

Constraint (A.2) sets the variable xij to be binary. The variable ui, found in
constraint (A.3), stores the order that each vertex is visited in the solution. Con-
straints (A.4) and (A.5) ensure that in each vertex one path enters and one path
exits. Finally, constraint (A.6) enforces the presence of a single path traversing all
the cities. These types of constraints are called sub-tour elimination constraints.

To solve the above minimisation problem, various solution methods have been
introduced. Some of them aim at solving the problem exactly, obtaining the
optimal solution, while some of them provide heuristic methods that can get close
to optimal approximations. Both of the solution approaches will be presented in
the following sections.

A.2 Exact solution methods

In the previous section, a famous trajectory optimisation method was presented,
along with an ILP formulation of it. This section will provide the essential tools
for finding the optimal solutions to this family of optimisation problems.

A.2.1 Linear programming

The integer linear programming formulations presented is a subset of the more
general set of linear problems. In the integer linear programming, the problem
variables are required to take integer values, while in the more generic linear
programs are allowed to take any real value.

The first formulation of linear programming problems was presented by Dantzig
[129]. He defined linear programs to be optimisation problems where the function
to be optimised is linear and that they are constrained by linear inequalities.
Danzig also presented the simplex method for linear optimisation. In this section,
the simplex method will be briefly presented through an example found in [130].

Assume that there is the following LP to be solved (i.e. to have (A.7) max-



Appendix A. On optimisation 123

imised).

max 5x1 + 4x2 + 3x3 (A.7)

s.t. 2x1 + 3x2 + x3 ≤ 5 (A.8)

4x1 + x2 + 2x3 ≤ 11 (A.9)

3x1 + 4x2 + 2x3 ≤ 8 (A.10)

x1, x2, x3 ≥ 0 (A.11)

The initial step is to transform all the inequalities to equalities adding slack
variables. After that the problem is the following:

max ζ = 5x1 + 4x2 + 3x3 (A.12)

s.t. w1 = 5− 2x1 − 3x2 − x3 (A.13)

w2 = 11− 4x1 − x2 − 2x3 (A.14)

w3 = 8− 3x1 − 4x2 − 2x3 (A.15)

x1, x2, x3, w1, w2, w3 ≥ 0 (A.16)

Essence of the simplex method is to find an initial solution that complies
with the constraints described in (A.13) - (A.16) and iteratively improve it until
it maximises the objective function (A.12). The variables appearing on the left
hand side in the constraints (A.13) - (A.15) are called the basic variables, forming
the set B. Similarly, the non-dependant variables are called non-basic variables
and form the set N . The whole set of equations (A.12) - (A.15) is referred as a
dictionary.

An initial feasible solution to this problem is setting the original variables to
zero. This would lead the objective function ζ to also have the value of 0 and the
slack variables to become w1 = 5, w2 = 11, w3 = 8.

To improve this solution one must look at the coefficients of the non-basic
variables in the objective function. Since all are positive, it means that altering
the value of each one of them will lead to an improvement to the objective value.
In each iteration, one variable that improves the solution is chosen. This variable
is named the entering variable as it leaves N and enters B. In the same manner,
a variable from B is selected that will enter N . This is called the leaving variable.



Appendix A. On optimisation 124

This variable is selected based on preserving the non-negative status of all the
other variables.

For this step, x1 is chosen to be the entering variable. It can be seen that
as x1 will increase it may cause the basic variables to become negative. The
maximum allowed increase must, therefore, be calculated. For w1, given that
x2 and x3 are kept to zero, one can calculate the maximum solving the equation
5−2x1 = 0. Thus, the maximum allowed increase for x1 given w1 is 5/2. Likewise,
the maximum allowed values based on w2 and w3 are calculated to be 11/4 and
8/3 respectively.

Given the results it is found that the maximum allowed increase is 5/2 and
is dictated by basic variable w1. This is the basic variable that will become the
leaving variable chosen in this step. To perform that equation (A.13) must be
solved for x1 producing the following equation:

x1 = 2.5− 0.5w1 − 1.5x2 − 0.5x3 (A.17)

Given equation (A.17), x1 is replaced in all instances it appears as a non-basic
variable leading to the following dictionary:

ζ = 12.5− 2.5w1 − 3.5x2 + 0.5x3 (A.18)

x1 = 2.5− 0.5w1 − 1.5x2 − 0.5x3 (A.19)

w2 = 1+ 2w1 + 5x2 (A.20)

w3 = 0.5+ 1.5w1 + 0.5x2 − 0.5x3 (A.21)

That concludes the first iteration of the simplex algorithm. For the second
iteration a new entering variable must be chosen. Looking at the objective function
it is obvious that there is only one candidate not lowering its value. That is x3

and is the next entering variable. Solving for the maximum increase one can find
it is 5 and 1 based on (A.19) and (A.21) respectively.This makes w3 the leaving
variable. The dictionary produced is the following:

ζ = 13− w1 − 3x2 − w3 (A.22)



Appendix A. On optimisation 125

x1 = 2− 2w1 − 2x2 + w3 (A.23)

w2 = 1+ 2w1 + 5x2 (A.24)

x3 = 1+ 3w1 + x2 − 2w3 (A.25)

Given that all the coefficients in (A.22) are negative, an entering variable
cannot be chosen as it would decrease the objective function value. This happens
because all the variables are constrained to be non-negative. This terminates the
simplex algorithm finding the optimal value. It can be calculated by setting the
independent variables to zero. This would give a value of ζ = 13.

Geometrical interpretation of a LP

In cases where the variables of a linear programming problem are less than three,
one can visualise the constraints along with the set of feasible solutions of the ob-
jective function. Using that plot one can find the optimal solution. The following
example from [130] will show the geometric representation of a linear programming
problem. Let (A.26) be the objective function to be maximised under constraints
(A.27)-(A.30).

max 3x1 + 2x2 (A.26)

s.t. − x1 + 3x2 ≤ 12 (A.27)

x1 + x2 ≤ 8 (A.28)

2x1 − x2 ≤ 10 (A.29)

x1, x2 ≥ 0 (A.30)

For each constraint present, a half-plane is formed. To plot these half planes,
one can substitute the inequality with equality and plot the equivalent line. The
half-plane can be calculated by selecting a point off the line and seeing if it satisfies
the constraint or not. In figure A.2a one can see the constraints of the aforemen-
tioned problem. The half-plane that each constraint is defining is indicated by the
direction of the arrow.

The area that is defined by the half-planes of the constraints is called the



Appendix A. On optimisation 126

(a) (b)

Figure A.2. Geometrical representation of constraints and feasible region for
a linear programming problem. The half-plane formed by each constraint is
indicated by a line and an accompanying arrow in A.2a. In A.2b the polygon
represents the feasible region for the problem. Its’ edges are formed by the
according constraints.

feasible region of the problem. The optimal solution for the problem will be in
one of the points of the feasible region. For the problem studied here the feasible
region can be seen in figure A.2b.

The objective function can then be plotted on the same graph as the con-
straints. This can be seen in figure A.3. As the value of the objective function
increases, the line that represents it moves to the right of the plot. The maximum
can be found as a single point where the objective function touches the feasible
region. For this example is at point (6,2) where the objective function takes the
value 22. In general in an optimisation problem, the maximum (or minimum) will
be found in one of the corners of the feasible region, formed by the constraints.

A.2.2 Branching

The simplex method, presented in the previous section, provides an excellent
method for generic linear optimisation problems. However, when integer solu-
tions are required, the simplex method may fail to find a solution.

To address that it was suggested to follow a divide and conquer strategy. In
this strategy the requirement for an integer solution is initially dropped, thus
forming a problem able to be solved by the simplex method. This is called an
LP relaxation of an ILP. The relaxed problem is then solved to optimality. To
move towards an integer solution, the optimal relaxation is then split into two



Appendix A. On optimisation 127

Figure A.3. Geometrical representation of the objective function of a linear
programming problem. The function can take any value within the feasible
region. The functions value increases as it moves from left to right. The
optimal is found in one of the edges of the feasible region. Here the optimal
has a value of 22.

different problems by choosing a violated integer variable having some real value
and giving it the closest integer values. The two sub-problems can then have an
LP relaxation computed and iteratively branched until a solution is found.

The suggested strategy was described in [131], [132] and is called branch and
bound. The name incorporates the two main concepts in that method, branching
as described before, and bounding. Bounding refers to the best bound on the
optimal value that is calculated by the relaxed ILP. This value suggests that
given those assumptions the optimal value of the integer problem will not be
lower (or greater for a maximisation problem) than the one produced from the LP
relaxation.

One can imagine this process as a tree having as its root the initial problem
that was split and branches spanning out of it. This method has the benefit of
searching the solution space and pruning regions where the value of the objective
function is not improved. This is done by comparing the value of the objective
function of each leaf LP relaxation on the tree with the best known valid solution.
If the LP relaxation is worse than that solution, then any further search on that
branch stops.



Appendix A. On optimisation 128

As with the generic LP, when the variables to be optimised are less than 3
the branching method can be visualised. Following an example from [133] will be
presented and visualised to help the reader understand the methods mechanics.
Let the following integer optimisation problem:

max 5x1 + 8x2 (A.31)

s.t. x1 + x2 ≤ 6 (A.32)

5x1 + 9x2 ≤ 45 (A.33)

x1, x2 ∈ Z≥0 (A.34)

In figure A.4 one can see the feasible region L0 of the aforementioned prob-
lem. The dots in the feasible region represent feasible integer points. The dashed
line shows the non-integer optimal solution, while the other lines represent the
problem’s constraints.

Figure A.4. Feasible region of an integer program. L0 is the feasible re-
gion and the dots within it represent feasible integer points. The dashed line
represents the non-integer optimal solution. The other lines represent the
constraints.

The continuous optimal solution is found in (2.25, 3.75) with value 41.25. The
closest integer solution to that can be obtained by rounding the optimal values to
(2, 4). Unfortunately, this solution is not feasible given the problem’s constraints.



Appendix A. On optimisation 129

Given the optimal value of the LP problem, one can form an upper bound for
the optimal value of the ILP. It can be easily shown that the ILP optimal value
z∗ ≤ 41.

Examining the LP solution one can start dividing the feasible region into
smaller parts in order to satisfy the integer constraints of the problem variables.
For example, the optimal value for x2 in the LP is 3.75. In the equivalent ILP the
value of x2 should be integer giving two feasible regions for the cases of x2 ≤ 3

and x2 ≥ 4 as it can be seen in figure A.5.

Figure A.5. Feasible regions of an integer program created after branching.
L1 is the feasible region for the case where x2 ≥ 4 while L2 for the case where
x2 ≤ 3.

The equivalent enumeration tree that is used to represent the branch and bound
method can be seen in figure A.6. It can be seen that two branches were created,
based on the additional constraints put on variable x2. Each of the branches
is representing a search direction in the two feasible regions created, L1 and L2

respectively.
The search will continue by expanding each of the two branches sequentially.

The branch L1 with x2 ≥ 4 will be expanded first. Taking a closer look in figure
A.5, one can see that the optimal LP solution for L1 is found for x2 = 4, x1 = 1.8

and z = 41. Given that x1 is not integer branches are created for the cases of
x1 ≤ 1 and x1 ≥ 2. These cases subdivide of L1 to L3 and L4 respectively as can
be seen in figure A.7. It should be noted that region L3 is not visualised as the



Appendix A. On optimisation 130

Figure A.6. Initial enumeration tree for the integer programming branch
and bound solution.

solution for that branch is infeasible.

Figure A.7. Feasible regions after subdividing region L1.

The enumeration tree after splitting branch L1 to two sub-branches can be
seen in figure A.8. The infeasible branch is marked with a ∗ symbol denoting that
it will not be searched more.

The next step to the search procedure is to calculate the optimal LP values for
L4. From the geometric representation of figure A.8 it can be seen that x1 = 1,
x2 = 4.4 and z = 40.5. Given that x2 should be an integer L4 must be divided



Appendix A. On optimisation 131

Figure A.8. Enumeration tree after splitting L1 to L3 and L4. Since L3 is
infeasible it is marked with a ∗ and that branch will not be searched more.

into two regions L5 and L6 for the cases of x2 ≤ 4 and x2 ≥ 5 respectively. This
division can be seen in figure A.9.

The search continues by exploring branches L5 and L6. Finding the optimal
LP solution for L5 gives the values x1 = 1, x2 = 4 and z = 37. This solution
is also a feasible solution for the integer problem which has now gotten a lower
bound of 37. Since the optimal solution for L5 is an integer one, that branch will
not be explored further. Branch L6 has a single feasible point, namely x1 = 0,
x2 = 5, which has an objective value of z = 40. This solution is updating the
lower bound of the ILP making it 40 ≤ z∗ ≤ 41 and stopping the exploration on
L6. The exploration tree after these steps can be seen in figure A.10.

The only active branch after exploring L5 and L6 is L2. Finding the optimal
LP value for L2 gives the values x1 = 3, x2 = 3 and z = 39. Since both x1 and x2

are integers, this solution is an acceptable solution for the ILP, and this branch
will not be explored any more. The final enumeration tree can be seen in figure
A.11. In case L2 did not give an integer solution, exploration would still stop as
the upper bound for this branch is less than the lower bound discovered by L5.

After all branches have been explored, the branch that gave the highest value



Appendix A. On optimisation 132

Figure A.9. Feasible regions after subdividing region L4.

to the objective function is the one that has calculated the optimal value for the
ILP. In this case the optimal value for z is 40 with x1 = 0 and x2 = 5. The ILP
objective function along with the constraints and the feasible regions used for the
branch and bound method can be seen in figure A.12.

A.2.3 Cutting planes

Another method that allows solutions to be found for an ILP was presented in
[134]. This method is also based on initially solving an LP relaxation of the ILP.
Then it iteratively adds constraints that transform the invalid LP relaxation to a
valid ILP. The basic idea is that if for example the inequality 2x1 + 3x2 ≤ 7.14 is
satisfied in the LP solution, then, the inequality 2x1+3x2 ≤ 7 will be valid for any
integer solution. This inequality adds a cut to the solution space limiting the area
that can be searched for a solution. The algorithm iteratively adds cuts and solves
the problem until an optimal integer solution is found. Following an example will
be presented. Let (A.35) be the objective function of an integer programming
problem having constraints (A.36)-(A.39).

max 4x1 − x2 (A.35)

s.t. 7x1 − 2x2 ≤ 14 (A.36)



Appendix A. On optimisation 133

Figure A.10. Enumeration tree after exploring branches L5 and L6.

x2 ≤ 3 (A.37)

2x1 − 2x2 ≤ 3 (A.38)

x1, x2 ∈ Z≥0 (A.39)

One can see the polyhedron described by the constraints, as well as the feasible
points in figure A.13. Adding slack variables leads to the following LP.

max 4x1 − x2 (A.40)

s.t. 7x1 − 2x2 + x3 = 14 (A.41)

x2 + x4 = 3 (A.42)

2x1 − 2x2 + x5 = 3 (A.43)

x1, x2, x3, x4, x5 ∈ Z≥0 (A.44)

Solving the above LP relaxing the integer constraint using the simplex algo-



Appendix A. On optimisation 134

Figure A.11. Final enumeration tree after exploring all branches.

rithm as described before gives the following result.

max 59/7 −4/7x3 −1/7x4 (A.45)

x1 +1/7x3 +2x4 =20/7 (A.46)

x2 +x4 =3 (A.47)

−2/7x3 +10/7x4 +x5 =23/7 (A.48)

From (A.46) it can be seen that x1=20/7. Given that it is fractional, a cut will
be introduced according to the Gomory-Chvátal algorithm. The generated cut is
shown in (A.50).

(
1

7
− b1

7
c)x3 + (

2

7
− b2

7
c)x4 ≥ (

20

7
− b20

7
c) (A.49)

⇔1

7
x3 +

2

7
x4 ≥

6

7
(A.50)



Appendix A. On optimisation 135

Figure A.12. Geometric representation of the objective function after finding
the optimal solution. It can be seen that the integer optimal solution is on
the top of the feasible region.

Given the cut of (A.50), the new constraint of (A.51) will be added to the
original LP problem described by (A.40)-(A.44).

1

7
x3 +

2

7
x4 + s =

6

7
(A.51)

Given (A.41) and (A.42) one can calculate that x3 = 14 − 7x1 + 2x2 and
x4 = 3− x2 respectively. Substituting them to (A.50) the cutting plane of (A.53)
is obtained. It can be seen in figure A.14.

1

7
(14− 7x1 + 2x2) +

2

7
(3− x2) ≥

6

7
(A.52)

⇔x1 ≤ 2 (A.53)

Solving the original LP relaxation including the new constraint results to the
following:

max 15/2− 1/5x5 − 3s (A.54)

x1 + s = 2 (A.55)



Appendix A. On optimisation 136

Figure A.13. Geometric representation of the polyhedron forming the integer
programming problem. The dots show feasible integer solutions.

x2 − 1/2s = 1/2 (A.56)

x3 − x5 − s = 1 (A.57)

x4 + 1/2x5 + 6s = 5/2 (A.58)

One can see that x2 gets the value of 1/2 from (A.56). Therefore a new cut
will be generated for x2. The new cut will be the one shown in (A.60).

(−
1

2
− b−1

2
c)x5 ≥ (

1

2
− b1

2
c) (A.59)

⇔1

2
x5 ≥

1

2
(A.60)

From (A.60) the following constraint (A.61) is derived and added to the original
LP problem.

1

2
x5 − t =

1

2
(A.61)

As done previously, the new constraint can be viewed in terms of the original
variables of the LP, namely x1 and x2. This can be seen in (A.63) and figure A.15.



Appendix A. On optimisation 137

Figure A.14. Geometric representation of the polyhedron forming the integer
programming problem after the first cut applied for x1 ≤ 2. The blue coloured
area is the feasible region and the dots show feasible integer solutions.

1

2
(2x1 − 2x2) − t =

1

2
(A.62)

⇔x1 − x2 ≤ 1 (A.63)

Finally, solving again the original relaxation of the LP the following is obtained:

max 7− 3s− t (A.64)

x1 + s = 2 (A.65)

x2 + s− t = 1 (A.66)

x3 − 5s− 2t = 2 (A.67)

x4 + 6s+ t = 2 (A.68)

x5 − t = 1 (A.69)

Since the optimal basic solution for the relaxed LP is integral, the solution for
the integer problem is also integral and found at (x1, x2) = (2, 1).

In [134] it was shown that if a sufficient number of cuts were added the algo-
rithm always converges to an optimal integer solution. One problem is that the



Appendix A. On optimisation 138

Figure A.15. Geometric representation of the polyhedron forming the integer
programming problem after the second cut is applied for x1 − x2 ≤ 1. The
blue coloured area is the feasible region and the dots show feasible integer
solutions.

number of constraints needing to be introduced to find the optimal solution can
be significant. The algorithm may be wasting time adding cuts that improve the
solution by an insignificant fraction that can lead to numerical instabilities.

In [135] it was proposed to combine the two aforementioned methods forming
the branch and cut algorithm. This algorithm uses the cutting planes method
to introduce cuts until no more useful cuts can be made. Then it branches and
tries to solve the sub-problems using a branch and cut method. In this way, the
numerical instabilities can be avoided. Branch and cut was found to be really
efficient in finding solutions and is used in most commercial solvers today.

A.3 Heuristic solution methods

The exact solution methods presented in the previous sections have proven their
usefulness in numerous cases. Unfortunately, the nature of the ILP and MIQP
problems can make them hard to solve, requiring too much time and computational
power to produce even a close to the optimal solution. For that reason, multiple
heuristic techniques have been proposed over the years. These methods aim to find
optimised solutions using search techniques which are computationally cheaper



Appendix A. On optimisation 139

than the exact methods and have demonstrated their real-world applicability in
multiple occasions. This section will briefly present some of the main heuristics
used in optimisation literature.

A.3.1 Ant colony optimisation

The ant colony optimisation (ACO) method was originally presented in [136]. It
is a construction based search method. These methods try to find the optimal
solution to the problem by iteratively constructing solutions that are improved
using some statistical measure for choosing how the solution is constructed.

The ACO method is inspired by the way ants are gathering food in nature.
Several species of ants are capable of marking their environment with a pheromone
that other ants can detect. Using this strategy, each ant can mark the path it fol-
lowed to reach a food source from the nest. Other ants sensing these pheromone
trails can find the shortest path leading to the food source. This was experimen-
tally shown in [137] and [138]. In these studies, ants were presented with two
different paths reaching the food source that were different in length. It was ob-
served that ants initially were exploring both paths to the food, but after some
time all the ants were using the shortest path.

Explanation of that behaviour can be found in the way the ants deposit the
aforementioned pheromone. At the beginning of the experiment, there is no
pheromone on any of the two paths. This made the ants choose randomly which
path to take. Given the length difference of the two paths, ants taking the shortest
one are reaching the food faster and begin to transport it back to the nest. After
depositing food back to the nest, there is a higher probability to choose the path
with higher pheromone levels to travel back to the source of food. This way one
of the two paths is gathering higher pheromone levels and most of the ants choose
that optimising their travelling distance. A picture depicting the path followed in
the experiment of [137] can be seen in figure A.16.

In the ACO method, multiple ants are used to produce different solutions.
They produce artificial pheromone trails, which are used to indicate preference
in the way a solution constructed. These trails are updated at run-time as more
information is gathered regarding the problem solved. In the initial setting, where
the artificial pheromone trails are not present, or at least not strong enough, more



Appendix A. On optimisation 140

Figure A.16. Replication of the paths used in [137]. Ants learned to follow
the shortest path to the food source (here depicted in green) using pheromone
trails.

solutions are explored as the ants are randomly generating solutions. In the later
stages, the solution space is much more limited, as solutions are built using prior
experience, and the best solution candidates are generated.

In addition to the artificial pheromone trails, ACO methods apply various
other techniques to improve the solution. For instance, each ant has memory that
is allowing constraints to be implemented. Another technique allows the amount
of pheromone that is deposited to be analogous to the quality of the produced so-
lution. Pheromone evaporation assumes that the amount of pheromone decreases
naturally over time if no action is taken. This helps the ACO to avoid getting
stuck to local optima too early in the solution process. Daemon actions are meth-
ods applied to the whole system by an external force and are used to influence the
system functionality. Each ant cannot generate any daemon action. For example,
changing the pheromone concentration can lead the search strategy to particular
solutions. An algorithmic view of the ACO can be seen in algorithm A.1.

More information on the topic can be found in [139] and [140] where the algo-
rithm and application examples are explained in detail.

A.3.2 Tabu Search

Another type of heuristic methods are the ones that try to find the optimal solution
through iterative modifications of a candidate solution. These modifications aim
to change the candidate solution enough so that it reaches an optimal status. An
exemplar method of this category is called Tabu Search (TS) and was presented



Appendix A. On optimisation 141

Algorithm A.1 Ant Colony Optimisation
Input: Number of ants na

Output: Best found solution s∗
1: InitialisePheromoneTrails
2: while termination criterion not satisfied do
3: for k = 1 to na do
4: sk = ConstructSolution
5: UpdatePheromoneTrails
6: ApplyPheromoneEvaporation
7: ApplyDaemonActions . optional
8: s∗ = UpdateBestFoundSolution
9: return s∗

in [141]. An algorithmic representation of TS can be seen in algorithm A.2.

Algorithm A.2 Tabu Search
Input: Initial solution s
Output: Best found solution s∗
1: T = InitialiseTabuList
2: while termination criterion not satisfied do
3: N = GetNeighbourhood(s)
4: s = ChooseBestNonTabuSolution(N, T)
5: T = UpdateTabuList(s)
6: s∗ = UpdateBestFoundSolution(s)
7: return s∗

The initial step is to initialise the tabu list. Then the algorithm iteratively
tries to modify the solution until a termination criterion is met. Firstly, it gets
the neighbourhood of candidate solution s, by performing all the possible mod-
ifications in that solution. Then the best allowable solution is chosen. This is
performed by choosing the best neighbour that is reachable with a modification
not in the tabu list. After the best neighbouring solution is chosen, the tabu
list is updated with the modification that led to that solution. Finally, the best-
found solution is updated with the current solution if that is applicable. If the
termination criterion is reached, the iterative improvement process stops and the
best-found solution to that time is returned.

One of the main concepts of the TS method, as revealed by its’ name, is the
tabu list. This list acts as a limited memory disallowing solutions to be revisited.
This prevents the search to repeatedly visit the same solutions in a cyclic manner.



Appendix A. On optimisation 142

Additionally, the tabu list allows the TS method to avoid local optima. This is
achieved by allowing the search to reach the local optimum, but then forcing it
to take steps that reduce the solution quality. Taking enough steps will allow to
escape the local optimum and reach better solutions. It must be noted that the
search is prevented from reaching the local optimum again, and thus get stuck to
it, as it prevents cycles in moves. An example of this behaviour can be seen in
figure A.17.

(a) (b)

Figure A.17. Example of tabu search avoiding a local minimum. After
solutions S1 and S2 the search arrives in local minimum S3 as shown in (a).
The next move is forcing the search to solution S4 as transitions to the previous
solutions are marked as tabu (crossed out in the figure). In the long run and
by marking all previous solutions as tabu the search arrives in the improved
minimum S8 as it can be seen in (b).

A.3.3 Genetic Algorithms

The third type of heuristic is based on optimisation based on solution recombi-
nation. Solution recombination is based on mixing two solutions in search of a
better solution. Genetic Algorithms (GA) is a prominent member of that family.
They trace their routes in the research of adaptive systems during the 1960’s [142],
[143]. The first theoretical formulation was done by Holland in 1975 [144]. Since
then they have been used in numerous applications. For example in [87], a genetic
algorithm is used to optimise marine sampling strategies.



Appendix A. On optimisation 143

The theory behind GA is treating the optimisation problem the way evolu-
tion is driven by natural selection in the real world. In a GA there is a set of
solutions, called the population. Every single solution in the population is called
a chromosome. In accordance with the biological counterpart, chromosomes are
constructed using genes whose specific values are called alleles. The optimisation
process of a GA is described in algorithm A.3 [145].

Algorithm A.3 Genetic Algorithm
Output: FittestChromosome
1: InitialisePopulation
2: while generation ≤MaxGeneration or Convergence do
3: Crossover
4: Mutate
5: SelectNewPopulation
6: Select FittestChromosome
7: return FittestChromosome

The initial step of a GA is to generate the population. This is performed either
randomly or using some heuristic, and it aims to have a variation in the solutions
produced. This will help to cover much of the search space and for characteristics
belonging to good solutions to appear as genes. Then the iterative part of opti-
misation is performed until the population converges to some characteristic or the
maximum amount of generations (i.e. iterations) is reached. In the iterative part
of the algorithm consists of the functions of crossover, mutation and selection as
would happen to a natural ecosystem.

Crossover is the action that recombines two solutions in the search for better
solutions. It is the equivalent action of mating; therefore, the two chromosomes
taking part are called parents and the solutions produced are called offsprings.
In general, it is hoped that the recombination of good parts of the parents will
produce better quality offsprings. A sample crossover operation can be seen in
figure A.18.

Mutation is the process of introducing some randomness into the solution.
As in the real world, mutations can alter the value of one or more genes in a
chromosome. Mutations usually happen to a percentage of the population based
on some problem defined mutation rate. A mutation example is depicted in figure
A.19.



Appendix A. On optimisation 144

Figure A.18. A sample crossover operation. Parts of two parents are com-
bined to create two offsprings.

Figure A.19. A sample mutation operation. The third gene of the chromo-
some represented changes value to a red allele.

At the end of each iteration, a new population is selected that will be the
next generation in the optimisation cycle. This happens by first evaluating each
chromosome in the population. Evaluation is based on the objective function that
needs to be optimised. Then the fittest chromosomes are selected and continue to
the next generation. In the final step of the algorithm, the fittest chromosome is
selected and is returned.

A.4 Summary

This appendix presented the required theory for solving optimisation problems.
One of the most famous problems in the optimisation literature was presented.
Along with that, methods to solve such problems exactly and approximately were
detailed.



Bibliography

[1] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouff, “Au-
tonomous and autonomic systems: A paradigm for future space exploration
missions”, IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 36, no. 3, pp. 279–291, 2006.

[2] B. Allotta, R. Costanzi, A. Ridolfi, C. Colombo, F. Bellavia, M. Fanfani,
F. Pazzaglia, O. Salvetti, D. Moroni, M. A. Pascali, et al., “The arrows
project: Adapting and developing robotics technologies for underwater ar-
chaeology”, IFAC-PapersOnLine, vol. 48, no. 2, pp. 194–199, 2015.

[3] T. Tomic, K. Schmid, P. Lutz, A. Domel, M. Kassecker, E. Mair, I. L.
Grixa, F. Ruess, M. Suppa, and D. Burschka, “Toward a fully autonomous
uav: Research platform for indoor and outdoor urban search and rescue”,
IEEE robotics & automation magazine, vol. 19, no. 3, pp. 46–56, 2012.

[4] J. Bellingham and J. Willcox, “Optimizing auv oceanographic surveys”, in
Autonomous Underwater Vehicle Technology, 1996. AUV ’96., Proceedings
of the 1996 Symposium on, Jun. 1996, pp. 391–398. doi: 10.1109/AUV.

1996.532439.

[5] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task
allocation in multi-robot systems”, IJRR, vol. 23, no. 9, 2004.

[6] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A
review of the state-of-the-art”, in Cooperative Robots and Sensor Networks
2015, Springer, 2015, pp. 31–51.

[7] M. Roth, D. Vail, and M. Veloso, “A real-time world model for multi-
robot teams with high-latency communication”, in Intelligent Robots and
Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International

145

http://dx.doi.org/10.1109/AUV.1996.532439
http://dx.doi.org/10.1109/AUV.1996.532439


Bibliography 146

Conference on, vol. 3, Oct. 2003, 2494–2499 vol.3. doi: 10.1109/IROS.

2003.1249244.

[8] I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke, “Data collec-
tion, storage, and retrieval with an underwater sensor network”, in Proceed-
ings of the 3rd International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’05, San Diego, California, USA: ACM, 2005, pp. 154–
165, isbn: 1-59593-054-X. doi: 10.1145/1098918.1098936. [Online]. Avail-
able: http://doi.acm.org/10.1145/1098918.1098936.

[9] Z. Saigol, G. Frost, N. Tsiogkas, F. Maurelli, D. Lane, A. Bourque, and
B. Nguyen, “Facilitating cooperative AUV missions: Experimental results
with an acoustic knowledge-sharing framework”, in Proceedings of IEEE-
MTS Oceans’13, San Diego, USA, 2013.

[10] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and its
application to informative path planning for persistent monitoring tasks”,
in Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ Interna-
tional Conference on, IEEE, 2014, pp. 342–349.

[11] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and its
application to persistent monitoring tasks”, IEEE Transactions on Robotics,
vol. 32, no. 5, pp. 1106–1118, Oct. 2016, issn: 1552-3098. doi: 10.1109/

TRO.2016.2593450.

[12] F. Maurelli, Z. Saigol, J. Cartwright, D. Lane, A. Bourque, and B. Nguyen,
“Tdma-based exchange policies for multi-robot communication of world
information”, in IFAC MCMC, 2012.

[13] I. Gurobi Optimization, Gurobi optimizer reference manual, 2014. [Online].
Available: http://www.gurobi.com.

[14] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm robotics:
A review from the swarm engineering perspective”, Swarm Intelligence,
2013.

[15] L. E. Parker, “Alliance: An architecture for fault tolerant multirobot coop-
eration”, Robotics and Automation, IEEE Transactions on, vol. 14, no. 2,
1998.

http://dx.doi.org/10.1109/IROS.2003.1249244
http://dx.doi.org/10.1109/IROS.2003.1249244
http://dx.doi.org/10.1145/1098918.1098936
http://doi.acm.org/10.1145/1098918.1098936
http://dx.doi.org/10.1109/TRO.2016.2593450
http://dx.doi.org/10.1109/TRO.2016.2593450
http://www.gurobi.com


Bibliography 147

[16] R. Zlot and A. Stentz, “Market-based multirobot coordination for complex
tasks”, The International Journal of Robotics Research, vol. 25, no. 1, Jan.
2006, issn: 0278-3649. doi: 10.1177/0278364906061160. [Online]. Avail-
able: http://ijr.sagepub.com/cgi/doi/10.1177/0278364906061160.

[17] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy for
multi-robot task allocation”, IJRR, vol. 32, no. 12, 2013.

[18] H. M. La, W. Sheng, and J. Chen, “Cooperative and active sensing in
mobile sensor networks for scalar field mapping”, IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 45, no. 1, pp. 1–12, 2015.

[19] J. Binney and G. S. Sukhatme, “Branch and bound for informative path
planning”, in Robotics and Automation (ICRA), 2012 IEEE International
Conference on, IEEE, 2012, pp. 2147–2154.

[20] V. D. Jr. and O. A., “The personnel assignment problem”, in Symposium
on Linear Inequalities and Programming, 1952, pp. 155–163.

[21] H. W. Kuhn, “The hungarian method for the assignment problem”, Naval
research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[22] R. Simmons, D. Apfelbaum, W. Burgard, D. Fox, M. Moors, S. Thrun,
and H. Younes, “Coordination for multi-robot exploration and mapping”,
in Aaai/Iaai, 2000, pp. 852–858.

[23] B. Gerkey and M. Mataric, “Sold!: Auction methods for multirobot coor-
dination”, IEEE Transactions on Robotics and Automation, vol. 18, no. 5,
Oct. 2002, issn: 1042-296X. doi: 10.1109/TRA.2002.803462. [Online].
Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=1067996.

[24] D. Vail, “Dynamic multi-robot coordination”, Multi-Robot Systems: From
Swarms to intelligent automata, 2003. [Online]. Available: http://books.

google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%

5C & amp ; oi = fnd % 5C & amp ; pg = PA87 % 5C & amp ; dq = DYNAMIC + MULTI -

ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-

cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%

5C_all.jsp?arnumber=5152765%20http://books.google.com/books?

hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;

http://dx.doi.org/10.1177/0278364906061160
http://ijr.sagepub.com/cgi/doi/10.1177/0278364906061160
http://dx.doi.org/10.1109/TRA.2002.803462
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1067996
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1067996
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw


Bibliography 148

pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;

ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw.

[25] D. B. Shmoys and É. Tardos, “An approximation algorithm for the gener-
alized assignment problem”, Mathematical programming, vol. 62, no. 1-3,
pp. 461–474, 1993.

[26] M. Savelsbergh, “A branch-and-price algorithm for the generalized assign-
ment problem”, Operations research, vol. 45, no. 6, pp. 831–841, 1997.

[27] P. Brucker, Scheduling Algorithms (5th ed.) Springer, 2006.

[28] P. Toth and D. Vigo, The vehicle routing problem. Society for Industrial
and Applied Mathematics, 2001.

[29] T. Bektas, “The multiple traveling salesman problem: An overview of for-
mulations and solution procedures”, Omega, vol. 34, no. 3, 2006, issn: 0305-
0483. doi: http://dx.doi.org/10.1016/j.omega.2004.10.004. [On-
line]. Available: http://www.sciencedirect.com/science/article/

pii/S0305048304001550.

[30] B. L. Brumitt and A. Stentz, “Grammps: A generalized mission planner
for multiple mobile robots in unstructured environments”, in Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat.
No. 98CH36146), IEEE, vol. 2, 1998, pp. 1564–1571.

[31] J. Melvin, P. Keskinocak, S. Koenig, C. Tovey, and B. Y. Ozka, “Multi-
robot routing with rewards and disjoint time windows”, in 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE, 2007,
pp. 2332–2337.

[32] M. B. Dias, “Traderbots : A new paradigm for robust and efficient multi-
robot coordination in dynamic environments”, PhD thesis, Carnegie Mellon
University, 2004.

[33] M. Berhault, H. Huang, P. Keskinocak, S. Koenig, W. Elmaghraby, P. Grif-
fin, and A. Kleywegt, “Robot exploration with combinatorial auctions”,
in Proceedings 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003)(Cat. No. 03CH37453), IEEE, vol. 2,
2003, pp. 1957–1962.

http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=DYNAMIC+MULTI-ROBOT+COORDINATION%5C&amp;ots=L-0-lDpHnM%5C&amp;sig=R41aP-cMDyitO8bB11doL3Lkr4Y%20http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=5152765%20http://books.google.com/books?hl=en%5C&amp;lr=%5C&amp;id=2H9pFRTNbRUC%5C&amp;oi=fnd%5C&amp;pg=PA87%5C&amp;dq=Dynamic+multi-robot+coordination%5C&amp;ots=L-0-lDpHvF%5C&amp;sig=QyvU3q4r2nJa2Ml8TxrfoBq-vFw
http://dx.doi.org/http://dx.doi.org/10.1016/j.omega.2004.10.004
http://www.sciencedirect.com/science/article/pii/S0305048304001550
http://www.sciencedirect.com/science/article/pii/S0305048304001550


Bibliography 149

[34] S. Koenig, C. A. Tovey, X. Zheng, and I. Sungur, “Sequential bundle-bid
single-sale auction algorithms for decentralized control.”, in IJCAI, 2007,
pp. 1359–1365.

[35] M. G. Lagoudakis, E. Markakis, D. Kempe, P. Keskinocak, A. Kleywegt,
S. Koenig, C. Tovey, A. Meyerson, and S. Jain, “Auction-based multi-robot
routing”, in Robotics: Science and Systems, Jun. 2005.

[36] J. B. Mazzola and A. W. Neebe, “Resource-constrained assignment schedul-
ing”, Operations Research, vol. 34, no. 4, pp. 560–572, 1986.

[37] D. Bredström and M. Rönnqvist, “Combined vehicle routing and schedul-
ing with temporal precedence and synchronization constraints”, European
journal of operational research, vol. 191, no. 1, pp. 19–31, 2008.

[38] A. Dohn, M. S. Rasmussen, and J. Larsen, “The vehicle routing problem
with time windows and temporal dependencies”, Networks, vol. 58, no. 4,
pp. 273–289, 2011.

[39] M. S. Rasmussen, T. Justesen, A. Dohn, and J. Larsen, “The home care
crew scheduling problem: Preference-based visit clustering and temporal
dependencies”, European Journal of Operational Research, vol. 219, no. 3,
pp. 598–610, 2012.

[40] S. Botelho, “M+: A scheme for multi-robot cooperation through negotiated
task allocation and achievement”, in Proceedings of the 1999 IEEE Interna-
tional Conference on Robotics and Automation (ICRA99), 1999. [Online].
Available: http : / / ieeexplore . ieee . org / xpls / abs % 5C _ all . jsp ?

arnumber=772530.

[41] D. C. MacKenzie, “Collaborative tasking of tightly constrained multi-robot
missions”, in Multi-Robot Systems: From Swarms to Intelligent Automata:
Proceedings of the 2003 International Workshop on Multi-Robot Systems,
Citeseer, vol. 2, 2003, pp. 39–50.

[42] S. Chien, A. Barrett, and T. Estlin, “A comparison of coordinated plan-
ning methods for cooperating rovers”, in 4th International Conference on
Autonomous Agents, 2000. [Online]. Available: http : / / dl . acm . org /

citation.cfm?id=337057.

http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=772530
http://ieeexplore.ieee.org/xpls/abs%5C_all.jsp?arnumber=772530
http://dl.acm.org/citation.cfm?id=337057
http://dl.acm.org/citation.cfm?id=337057


Bibliography 150

[43] T. Lemaire, R. Alami, and S. Lacroix, “A distributed tasks allocation
scheme in multi-uav context”, in IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004, IEEE, vol. 4, 2004,
pp. 3622–3627.

[44] A. R. Mosteo, L. Montano, and M. G. Lagoudakis, “Multi-robot routing
under limited communication range”, in 2008 IEEE International Confer-
ence on Robotics and Automation, IEEE, 2008, pp. 1531–1536.

[45] E. Balas and M. W. Padberg, “Set partitioning: A survey”, SIAM review,
vol. 18, no. 4, pp. 710–760, 1976.

[46] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R. Jennings,
“Coalition formation with spatial and temporal constraints”, in Proceedings
of the 9th International Conference on Autonomous Agents and Multiagent
Systems: Volume 3-Volume 3, International Foundation for Autonomous
Agents and Multiagent Systems, 2010, pp. 1181–1188.

[47] O. Shehory and S. Kraus, “Task allocation via coalition formation among
autonomous agents”, in IJCAI (1), Citeseer, 1995, pp. 655–661.

[48] ——, “Methods for task allocation via agent coalition formation”, Artificial
intelligence, vol. 101, no. 1-2, pp. 165–200, 1998.

[49] L. Vig and J. A. Adams, “Multi-robot coalition formation”, IEEE transac-
tions on robotics, vol. 22, no. 4, pp. 637–649, 2006.

[50] J. Guerrero and G. Oliver, “Multi-robot task allocation strategies using
auction-like mechanisms”, Artificial Research and Development in Frontiers
in Artificial Intelligence and Applications, vol. 100, pp. 111–122, 2003.

[51] L. Lin and Z. Zheng, “Combinatorial bids based multi-robot task alloca-
tion method”, in Proceedings of the 2005 IEEE international conference on
robotics and automation, IEEE, 2005, pp. 1145–1150.

[52] P. M. Shiroma and M. F. Campos, “Comutar: A framework for multi-
robot coordination and task allocation”, in 2009 IEEE/RSJ international
conference on intelligent robots and systems, IEEE, 2009, pp. 4817–4824.



Bibliography 151

[53] M. Koes, I. Nourbakhsh, and K. Sycara, “Constraint optimization coor-
dination architecture for search and rescue robotics”, in Proceedings 2006
IEEE International Conference on Robotics and Automation, 2006. ICRA
2006., IEEE, 2006, pp. 3977–3982.

[54] G. A. Korsah, B. Kannan, B. Browning, A. Stentz, and M. B. Dias, “Xbots:
An approach to generating and executing optimal multi-robot plans with
cross-schedule dependencies”, in 2012 IEEE International Conference on
Robotics and Automation, IEEE, 2012, pp. 115–122.

[55] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, and
P. H. Vance, “Branch-and-price: Column generation for solving huge integer
programs”, Operations research, vol. 46, no. 3, pp. 316–329, 1998.

[56] E. G. Jones, M. B. Dias, and A. Stentz, “Time-extended multi-robot coor-
dination for domains with intra-path constraints”, Autonomous robots, vol.
30, no. 1, pp. 41–56, 2011.

[57] L. E. Parker and F. Tang, “Building multirobot coalitions through auto-
mated task solution synthesis”, Proceedings of the IEEE, vol. 94, no. 7,
pp. 1289–1305, 2006.

[58] T. Tsiligirides, “Heuristic methods applied to orienteering”, Journal of the
Operational Research Society, vol. 35, no. 9, pp. 797–809, 1984.

[59] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem”, Naval
research logistics, vol. 34, no. 3, pp. 307–318, 1987.

[60] G. Laporte and S. Martello, “The selective travelling salesman problem”,
Discrete applied mathematics, vol. 26, no. 2-3, pp. 193–207, 1990.

[61] M. Gendreau, G. Laporte, and F. Semet, “A branch-and-cut algorithm for
the undirected selective traveling salesman problem”, Networks, vol. 32, no.
4, pp. 263–273, 1998.

[62] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The orienteer-
ing problem: A survey”, European Journal of Operational Research, vol.
209, no. 1, pp. 1–10, 2011.

[63] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem: A
survey of recent variants, solution approaches and applications”, European
Journal of Operational Research, vol. 255, no. 2, pp. 315–332, 2016.



Bibliography 152

[64] I.-M. Chao, B. L. Golden, and E. A. Wasil, “A fast and effective heuristic
for the orienteering problem”, European journal of operational research, vol.
88, no. 3, pp. 475–489, 1996.

[65] M. Gendreau, G. Laporte, and F. Semet, “A tabu search heuristic for the
undirected selective travelling salesman problem”, European Journal of Op-
erational Research, vol. 106, no. 2, pp. 539–545, 1998.

[66] Y.-C. Liang, S. Kulturel-Konak, and A. E. Smith, “Meta heuristics for
the orienteering problem”, in Evolutionary Computation, 2002. CEC’02.
Proceedings of the 2002 Congress on, IEEE, vol. 1, 2002, pp. 384–389.

[67] M. F. Tasgetiren, “A genetic algorithm with an adaptive penalty function
for the orienteering problem”, Journal of Economic and Social Research,
vol. 4, no. 2, pp. 1–26, 2001.

[68] M. Schilde, K. F. Doerner, R. F. Hartl, and G. Kiechle, “Metaheuristics
for the bi-objective orienteering problem”, Swarm Intelligence, vol. 3, no.
3, pp. 179–201, 2009.

[69] X. Wang, B. L. Golden, and E. A. Wasil, “Using a genetic algorithm to
solve the generalized orienteering problem”, in The vehicle routing problem:
Latest advances and new challenges, Springer, 2008, pp. 263–274.

[70] J. Karbowska-Chilinska, J. Koszelew, K. Ostrowski, and P. Zabielski, “Ge-
netic algorithm solving orienteering problem in large networks.”, in KES,
2012, pp. 28–38.

[71] Z. Sevkli and F. E. Sevilgen, “Discrete particle swarm optimization for the
orienteering problem”, in IEEE Congress on Evolutionary Computation,
IEEE, 2010, pp. 1–8.

[72] V. Campos, R. Martí, J. Sánchez-Oro, and A. Duarte, “Grasp with path
relinking for the orienteering problem”, Journal of the Operational Research
Society, vol. 65, no. 12, pp. 1800–1813, 2014.

[73] Y. Marinakis, M. Politis, M. Marinaki, and N. Matsatsinis, “A memetic-
grasp algorithm for the solution of the orienteering problem”, in Modelling,
Computation and Optimization in Information Systems and Management
Sciences, Springer, 2015, pp. 105–116.



Bibliography 153

[74] I.-M. Chao, B. L. Golden, and E. A. Wasil, “The team orienteering prob-
lem”, European Journal of Operational Research, vol. 88, no. 3, pp. 464–
474, 1996, issn: 0377-2217. doi: https : / / doi . org / 10 . 1016 / 0377 -

2217(94)00289-4. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/0377221794002894.

[75] H. Tang and E. Miller-Hooks, “A tabu search heuristic for the team orien-
teering problem”, Computers & Operations Research, vol. 32, no. 6, pp. 1379–
1407, 2005.

[76] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden,
“A guided local search metaheuristic for the team orienteering problem”,
European journal of operational research, vol. 196, no. 1, pp. 118–127, 2009.

[77] ——, “Iterated local search for the team orienteering problem with time
windows”, Computers & Operations Research, vol. 36, no. 12, pp. 3281–
3290, 2009.

[78] L. Ke, C. Archetti, and Z. Feng, “Ants can solve the team orienteering
problem”, Computers & Industrial Engineering, vol. 54, no. 3, pp. 648–
665, 2008.

[79] N. Labadie, R. Mansini, J. Melechovskỳ, and R. W. Calvo, “The team
orienteering problem with time windows: An lp-based granular variable
neighborhood search”, European Journal of Operational Research, vol. 220,
no. 1, pp. 15–27, 2012.

[80] B. Aghezzaf and H. E. Fahim, “The multi-constraint team orienteering
problem with time windows in the context of distribution problems: A
variable neighborhood search algorithm”, in Logistics and Operations Man-
agement (GOL), 2014 International Conference on, IEEE, 2014, pp. 155–
160.

[81] S.-W. Lin and F. Y. Vincent, “A simulated annealing heuristic for the team
orienteering problem with time windows”, European Journal of Operational
Research, vol. 217, no. 1, pp. 94–107, 2012.

[82] W. Souffriau, P. Vansteenwegen, G. V. Berghe, and D. Van Oudheusden,
“A path relinking approach for the team orienteering problem”, Computers
& operations research, vol. 37, no. 11, pp. 1853–1859, 2010.

http://dx.doi.org/https://doi.org/10.1016/0377-2217(94)00289-4
http://dx.doi.org/https://doi.org/10.1016/0377-2217(94)00289-4
http://www.sciencedirect.com/science/article/pii/0377221794002894
http://www.sciencedirect.com/science/article/pii/0377221794002894


Bibliography 154

[83] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative
sensing using multiple robots”, Journal of Artificial Intelligence Research,
pp. 707–755, 2009.

[84] C. Chekuri and M. Pal, “A recursive greedy algorithm for walks in directed
graphs”, in 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05), IEEE, 2005, pp. 245–253.

[85] J. Binney, A. Krause, and G. S. Sukhatme, “Informative path planning for
an autonomous underwater vehicle”, in Robotics and automation (icra),
2010 IEEE international conference on, IEEE, 2010, pp. 4791–4796.

[86] L. Heng, A. Gotovos, A. Krause, and M. Pollefeys, “Efficient visual explo-
ration and coverage with a micro aerial vehicle in unknown environments”,
in Robotics and Automation (ICRA), 2015 IEEE International Conference
on, IEEE, 2015, pp. 1071–1078.

[87] S. Frolov, B. Garau, and J. Bellingham, “Can we do better than the grid
survey: Optimal synoptic surveys in presence of variable uncertainty and
decorrelation scales”, Journal of Geophysical Research: Oceans, vol. 119,
no. 8, pp. 5071–5090, 2014.

[88] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning for
a symbiotic uav and ugv system for precision agriculture”, IEEE Transac-
tions on Robotics, vol. 32, no. 6, pp. 1498–1511, 2016.

[89] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff,
“Approximation algorithms for orienteering and discounted-reward tsp”,
SIAM Journal on Computing, vol. 37, no. 2, pp. 653–670, 2007.

[90] R. Pěnička, J. Faigl, P. Váňa, and M. Saska, “Dubins orienteering problem”,
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1210–1217, 2017.

[91] ——, “Dubins orienteering problem with neighborhoods”, in Unmanned
Aircraft Systems (ICUAS), 2017 International Conference on, IEEE, 2017,
pp. 1555–1562.

[92] S. Arora and S. Scherer, “Randomized algorithm for informative path plan-
ning with budget constraints”, in Robotics and Automation (ICRA), 2017
IEEE International Conference on, IEEE, 2017, pp. 4997–5004.



Bibliography 155

[93] C. J. Matheus, M. M. Kokar, and K. Baclawski, “A core ontology for sit-
uation awareness”, in Proceedings of the Sixth International Conference of
Information Fusion, 2003, vol. 1, 2003. doi: 10.1109/ICIF.2003.177494.
[Online]. Available: http://ftp.isif.org/fusion/proceedings/fusion03CD/

special/s36.pdf.

[94] G. Papadimitriou and D. Lane, “Semantic based knowledge representation
and adaptive mission planning for MCM missions using AUVs”, in IEEE-
MTS Oceans’14, Taipei, Republic of China, 2014.

[95] A. Jena, A free and open source java framework for building semantic web
and linked data applications, 2017. [Online]. Available: https://jena.

apache.org.

[96] P. Hintjens, ZeroMQ: Messaging for many applications. " O’Reilly Media,
Inc.", 2013.

[97] E. GMBH, Evologics s2cd 18/34, 2017. [Online]. Available: https://www.

evologics.de/en/products/acoustics/s2cr_18_34.html.

[98] N. S. Board, N. R. Council, et al., Naval mine warfare: Operational and
technical challenges for naval forces. National Academies Press, 2001.

[99] L. Freitag, M. Grund, C. Von Alt, R. Stokey, and T. Austin, “A shal-
low water acoustic network for mine countermeasures operations with au-
tonomous underwater vehicles”, Underwater Defense Technology (UDT),
pp. 1–6, 2005.

[100] A. R. Thompson, “Evaluating the combined uuv efforts in a large-scale
mine warfare environment”, DTIC Document, Tech. Rep., 2015.

[101] ARROWS, Online - http://www.arrowsproject.eu/, ARchaeological RObot
systems for the World’s Seas, 2012.

[102] I. Kara and T. Bektas, “Integer linear programming formulations of multi-
ple salesman problems and its variations”, European Journal of Operational
Research, vol. 174, no. 3, pp. 1449–1458, 2006.

[103] N. Valeyrie, F. Maurelli, P Patron, J. Cartwright, B. Davis, Y. Petillot,
“Nessie v turbo: a new hover and power slide capable torpedo shaped auv
for survey, inspection and intervention”, in AUVSI North America 2010
Conference, 2010.

http://dx.doi.org/10.1109/ICIF.2003.177494
http://ftp.isif.org/fusion/proceedings/fusion03CD/special/s36.pdf
http://ftp.isif.org/fusion/proceedings/fusion03CD/special/s36.pdf
https://jena.apache.org
https://jena.apache.org
https://www.evologics.de/en/products/acoustics/s2cr_18_34.html
https://www.evologics.de/en/products/acoustics/s2cr_18_34.html


Bibliography 156

[104] T. open source robotics foundation (OSRF), Turtlebot2 open-source robot
development kit for apps on wheels. 2012. [Online]. Available: http://www.

turtlebot.com/turtlebot2/.

[105] M. Elango, S. Nachiappan, and M. K. Tiwari, “Balancing task allocation
in multi-robot systems using K-means clustering and auction based mech-
anisms”, Expert Systems With App.s, vol. 38, no. 6, 2011.

[106] J. MacQueen et al., “Some methods for classification and analysis of mul-
tivariate observations”, in The 5th Berkeley symposium on mathematical
statistics and probability, California, USA, vol. 1, 1967.

[107] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding”, in 18th ACM-SIAM symposium on Discrete algorithms, 2007.

[108] N. Tsiogkas, Z. Saigol, and D. Lane, “Distributed multi-auv cooperation
methods for underwater archaeology”, in OCEANS 2015-Genova, IEEE,
2015, pp. 1–5.

[109] N. Tsiogkas, V. De Carolis, and D. M. Lane, “Energy-constrained infor-
mative routing for auvs”, in OCEANS 2016-Shanghai, IEEE, 2016, pp. 1–
5.

[110] N. Tsiogkas, V. De Carolis, and D. Lane, “Towards an online heuristic
method for energy-constrained underwater sensing mission planning”, in In-
telligent Robots and Systems (IROS), 2017 IEEE/RSJ International Con-
ference on, IEEE, 2017.

[111] G. A. Croes, “A method for solving traveling-salesman problems”, Opera-
tions research, vol. 6, no. 6, pp. 791–812, 1958.

[112] A. Singh and A. S. Baghel, “A new grouping genetic algorithm approach
to the multiple traveling salesperson problem”, Soft Computing-A Fusion
of Foundations, Methodologies and Applications, vol. 13, no. 1, pp. 95–101,
2009.

[113] H. Li and D. Landa-Silva, “An elitist grasp metaheuristic for the multi-
objective quadratic assignment problem”, in Evolutionary multi-criterion
optimization, Springer, 2009, pp. 481–494.

http://www.turtlebot.com/turtlebot2/
http://www.turtlebot.com/turtlebot2/


Bibliography 157

[114] A. E. Eiben and S. K. Smit, “Parameter tuning for configuring and analyz-
ing evolutionary algorithms”, Swarm and Evolutionary Computation, vol.
1, no. 1, pp. 19–31, 2011.

[115] N. Veček, M. Mernik, B. Filipič, and M. Črepinšek, “Parameter tuning with
chess rating system (crs-tuning) for meta-heuristic algorithms”, Informa-
tion Sciences, vol. 372, pp. 446–469, 2016.

[116] M. E. Glickman, “Example of the glicko-2 system”, Boston University,
2012.

[117] F. Li, B. Golden, and E. Wasil, “The open vehicle routing problem: Algo-
rithms, large-scale test problems, and computational results”, Computers
& Operations Research, vol. 34, no. 10, pp. 2918–2930, 2007.

[118] N. Tsiogkas and D. M. Lane, “An evolutionary algorithm for online, resource-
constrained, multivehicle sensing mission planning”, IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 1199–1206, Apr. 2018. doi: 10.1109/

LRA.2018.2794578.

[119] A. Baddeley, I. Bárány, and R. Schneider, “Spatial point processes and their
applications”, Stochastic Geometry: Lectures given at the CIME Summer
School held in Martina Franca, Italy, September 13–18, 2004, pp. 1–75,
2007.

[120] P. J. Diggle, J. Besag, and J. T. Gleaves, “Statistical analysis of spatial
point patterns by means of distance methods”, Biometrics, pp. 659–667,
1976.

[121] J. A. Ludwig, L. QUARTET, and J. F. Reynolds, Statistical ecology: A
primer in methods and computing. John Wiley & Sons, 1988, vol. 1.

[122] G. J. Babu and E. D. Feigelson, Astrostatistics. CRC Press, 1996, vol. 3.

[123] J. Ohser and F. Mücklich, Statistical analysis of microstructures in mate-
rials science. Wiley, 2000.

[124] P. Elliot, J. C. Wakefield, N. G. Best, D. J. Briggs, et al., Spatial epidemi-
ology: Methods and applications. Oxford University Press, 2000.

http://dx.doi.org/10.1109/LRA.2018.2794578
http://dx.doi.org/10.1109/LRA.2018.2794578


Bibliography 158

[125] N. Tsiogkas and D. M. Lane, “Dcop: Dubins correlated orienteering problem
optimizing sensing missions of a nonholonomic vehicle under budget con-
straints”, IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 2926–
2933, Oct. 2018. doi: 10.1109/LRA.2018.2847719.

[126] G. Frost, D. M. Lane, N. Tsiogkas, D. Spaccini, C. Petrioli, M. Kruusmaa,
V. Preston, and T. Salumäe, “Mango: Federated world model using an
underwater acoustic network”, in OCEANS 2017-Aberdeen, IEEE, 2017,
pp. 1–6.

[127] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming for-
mulation of traveling salesman problems”, Journal of the ACM (JACM),
vol. 7, no. 4, pp. 326–329, 1960.

[128] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko, “Approxima-
tion algorithms for asymmetric tsp by decomposing directed regular multi-
graphs”, Journal of the ACM (JACM), vol. 52, no. 4, pp. 602–626, 2005.

[129] G. Dantzig, Linear programming and extensions. Princeton university press,
1963.

[130] R. J. Vanderbei, Linear Programming: Foundations and Extensions, 4th ed.,
ser. International Series in Operations Research and Management Science
196. Springer US, 2014.

[131] W. L. Eastman, Linear programming with pattern constraints: A thesis.
Harvard University, 1958.

[132] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel, “An algorithm
for the traveling salesman problem”, Operations research, vol. 11, no. 6,
pp. 972–989, 1963.

[133] S. Bradley, A. Hax, and T. Magnanti, Applied mathematical programming.
Addison Wesley, 1977.

[134] R. Gomory, “The traveling salesman problem”, in Proceedings of the IBM
Scientific Computing Symposium on Combinatorial Problems, 1966, pp. 93–
121.

[135] M. Padberg and G. Rinaldi, “Optimization of a 532-city symmetric trav-
eling salesman problem by branch and cut”, Operations Research Letters,
vol. 6, no. 1, pp. 1–7, 1987.

http://dx.doi.org/10.1109/LRA.2018.2847719


Bibliography 159

[136] M. Dorigo and G. Di Caro, “Ant colony optimization: A new meta-heuristic”,
in Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress
on, IEEE, vol. 2, 1999, pp. 1470–1477.

[137] S. Goss, S. Aron, J.-L. Deneubourg, and J. M. Pasteels, “Self-organized
shortcuts in the argentine ant”,Naturwissenschaften, vol. 76, no. 12, pp. 579–
581, 1989.

[138] J.-L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels, “The self-organizing
exploratory pattern of the argentine ant”, Journal of insect behavior, vol.
3, no. 2, pp. 159–168, 1990.

[139] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization”, IEEE
computational intelligence magazine, vol. 1, no. 4, pp. 28–39, 2006.

[140] M. Dorigo and T. Stützle, “Ant colony optimization: Overview and recent
advances”, in Handbook of metaheuristics, Springer, 2010, pp. 227–263.

[141] F. Glover, “Tabu search part I”, ORSA Journal on computing, vol. 1, no.
3, pp. 190–206, 1989.

[142] J. H. Holland, “Outline for a logical theory of adaptive systems”, Journal
of the ACM (JACM), vol. 9, no. 3, pp. 297–314, 1962.

[143] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learn-
ing”, Machine learning, vol. 3, no. 2, pp. 95–99, 1988.

[144] J. H. Holland, Adaptation in natural and artificial systems: An introduc-
tory analysis with applications to biology, control, and artificial intelligence.
MIT press, 1992.

[145] M. Mitchell, An introduction to genetic algorithms. MIT press, 1998.


