389,213 research outputs found

    Generalized Triangular Decomposition in Transform Coding

    Get PDF
    A general family of optimal transform coders (TCs) is introduced here based on the generalized triangular decomposition (GTD) developed by Jiang This family includes the Karhunen-Loeve transform (KLT) and the generalized version of the prediction-based lower triangular transform (PLT) introduced by Phoong and Lin as special cases. The coding gain of the entire family, with optimal bit allocation, is equal to that of the KLT and the PLT. Even though the original PLT introduced by Phoong is not applicable for vectors that are not blocked versions of scalar wide sense stationary processes, the GTD-based family includes members that are natural extensions of the PLT, and therefore also enjoy the so-called MINLAB structure of the PLT, which has the unit noise-gain property. Other special cases of the GTD-TC are the geometric mean decomposition (GMD) and the bidiagonal decomposition (BID) transform coders. The GMD-TC in particular has the property that the optimum bit allocation is a uniform allocation; this is because all its transform domain coefficients have the same variance, implying thereby that the dynamic ranges of the coefficients to be quantized are identical

    On the rate-distortion performance and computational efficiency of the Karhunen-Loeve transform for lossy data compression

    Get PDF
    We examine the rate-distortion performance and computational complexity of linear transforms for lossy data compression. The goal is to better understand the performance/complexity tradeoffs associated with using the Karhunen-Loeve transform (KLT) and its fast approximations. Since the optimal transform for transform coding is unknown in general, we investigate the performance penalties associated with using the KLT by examining cases where the KLT fails, developing a new transform that corrects the KLT's failures in those examples, and then empirically testing the performance difference between this new transform and the KLT. Experiments demonstrate that while the worst KLT can yield transform coding performance at least 3 dB worse than that of alternative block transforms, the performance penalty associated with using the KLT on real data sets seems to be significantly smaller, giving at most 0.5 dB difference in our experiments. The KLT and its fast variations studied here range in complexity requirements from O(n^2) to O(n log n) in coding vectors of dimension n. We empirically investigate the rate-distortion performance tradeoffs associated with traversing this range of options. For example, an algorithm with complexity O(n^3/2) and memory O(n) gives 0.4 dB performance loss relative to the full KLT in our image compression experiment

    A spectral multi-resolution image encoding network

    Get PDF
    After a short introduction into traditional image transform coding, multirate systems and multiscale signal coding the paper focuses on the subject of image encoding by a neural network. Taking also noise into account a network model is proposed which not only learns the optimal localized basis functions for the transform but also learns to implement a whitening filter by multi-resolution encoding. A simulation showing the multi-resolution capabilitys concludes the contribution

    Separable Karhunen Loeve transforms for the weighted universal transform coding algorithm

    Get PDF
    The weighted universal transform code (WUTC) is a two-stage transform code that replaces JPEG's single, non-optimal transform code with a jointly designed collection of transform codes to achieve good performance across a broader class of possible sources. Unfortunately, the performance gains of WUTC are achieved at the expense of significant increases in computational complexity and larger codes. We here present a faster, more space-efficient WUTC algorithm. The new algorithm uses separable coding instead of direct KLT. While separable coding gives performance comparable to that of WUTC, it uses only 1/8 of the floating-point multiplications and 1/32 of storage of direct KLT. Experimental results included in this work compare the performance of new separable WUTC with both the WUTC and other fast variations of that algorithm

    Weighted universal transform coding: universal image compression with the Karhunen-Loève transform

    Get PDF
    We introduce a two-stage universal transform code for image compression. The code combines Karhunen-Loève transform coding with weighted universal bit allocation (WUBA) in a two-stage algorithm analogous to the algorithm for weighted universal vector quantization (WUVQ). The encoder uses a collection of transform/bit allocation pairs rather than a single transform/bit allocation pair (as in JPEG) or a single transform with a variety of bit allocations (as in WUBA). We describe both an encoding algorithm for achieving optimal compression using a collection of transform/bit allocation pairs and a technique for designing locally optimal collections of transform/bit allocation pairs. We demonstrate the performance using the mean squared error distortion measure. On a sequence of combined text and gray scale images, the algorithm achieves up to a 2 dB improvement over a JPEG style coder using the discrete cosine transform (DCT) and an optimal collection of bit allocations, up to a 3 dB improvement over a JPEG style coder using the DCT and a single (optimal) bit allocation, up to 6 dB over an entropy constrained WUVQ with first- and second-stage vector dimensions equal to 16 and 4 respectively, and up to a 10 dB improvement over an entropy constrained vector quantizer (ECVQ) with a vector dimension of 4

    Optimal block cosine transform image coding for noisy channels

    Get PDF
    The two dimensional block transform coding scheme based on the discrete cosine transform was studied extensively for image coding applications. While this scheme has proven to be efficient in the absence of channel errors, its performance degrades rapidly over noisy channels. A method is presented for the joint source channel coding optimization of a scheme based on the 2-D block cosine transform when the output of the encoder is to be transmitted via a memoryless design of the quantizers used for encoding the transform coefficients. This algorithm produces a set of locally optimum quantizers and the corresponding binary code assignment for the assumed transform coefficient statistics. To determine the optimum bit assignment among the transform coefficients, an algorithm was used based on the steepest descent method, which under certain convexity conditions on the performance of the channel optimized quantizers, yields the optimal bit allocation. Comprehensive simulation results for the performance of this locally optimum system over noisy channels were obtained and appropriate comparisons against a reference system designed for no channel error were rendered

    Suboptimality of the Karhunen-Loève transform for transform coding

    Get PDF
    We examine the performance of the Karhunen-Loeve transform (KLT) for transform coding applications. The KLT has long been viewed as the best available block transform for a system that orthogonally transforms a vector source, scalar quantizes the components of the transformed vector using optimal bit allocation, and then inverse transforms the vector. This paper treats fixed-rate and variable-rate transform codes of non-Gaussian sources. The fixed-rate approach uses an optimal fixed-rate scalar quantizer to describe the transform coefficients; the variable-rate approach uses a uniform scalar quantizer followed by an optimal entropy code, and each quantized component is encoded separately. Earlier work shows that for the variable-rate case there exist sources on which the KLT is not unique and the optimal quantization and coding stage matched to a "worst" KLT yields performance as much as 1.5 dB worse than the optimal quantization and coding stage matched to a "best" KLT. In this paper, we strengthen that result to show that in both the fixed-rate and the variable-rate coding frameworks there exist sources for which the performance penalty for using a "worst" KLT can be made arbitrarily large. Further, we demonstrate in both frameworks that there exist sources for which even a best KLT gives suboptimal performance. Finally, we show that even for vector sources where the KLT yields independent coefficients, the KLT can be suboptimal for fixed-rate coding

    Generalized polyphase representation and application to coding gain enhancement

    Get PDF
    Generalized polyphase representations (GPP) have been mentioned in literature in the context of several applications. In this paper, we provide a characterization for what constitutes a valid GPP. Then, we study an application of GPP, namely in improving the coding gains of transform coding systems. We also prove several properties of the GPP

    Transform domain distributed video coding using larger transform blocks

    Get PDF
    Distributed Video Coding (DVC) displays promising performance at low spatial resolutions but begins to struggle as the resolution increases. One of the limiting aspects is its 4x4 block size of Discrete Cosine Transform (DCT) which is often impractical at higher resolutions. This paper investigates the impact of exploiting larger DCT block sizes on the performance of transform domain DVC at higher spatial resolutions. In order to utilize a larger block size in DVC, appropriate quantisers have to be selected and this has been solved by means of incorporating a content-aware quantisation mechanism to generate image specific quantisation matrix for any DCT block size. Experimental results confirm that the larger 8x8 block size consistently exhibit superior RD performance for CIF resolution sequences compared to the smaller 4x4 block sizes. Significant PSNR improvement has been observed for 16x16 block size at 4CIF resolution with up to 1.78dB average PSNR gain compared to its smaller block alternatives
    corecore