215,295 research outputs found
Transductions Computed by One-Dimensional Cellular Automata
Cellular automata are investigated towards their ability to compute
transductions, that is, to transform inputs into outputs. The families of
transductions computed are classified with regard to the time allowed to
process the input and to compute the output. Since there is a particular
interest in fast transductions, we mainly focus on the time complexities real
time and linear time. We first investigate the computational capabilities of
cellular automaton transducers by comparing them to iterative array
transducers, that is, we compare parallel input/output mode to sequential
input/output mode of massively parallel machines. By direct simulations, it
turns out that the parallel mode is not weaker than the sequential one.
Moreover, with regard to certain time complexities cellular automaton
transducers are even more powerful than iterative arrays. In the second part of
the paper, the model in question is compared with the sequential devices
single-valued finite state transducers and deterministic pushdown transducers.
It turns out that both models can be simulated by cellular automaton
transducers faster than by iterative array transducers.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249
Lipschitz Robustness of Finite-state Transducers
We investigate the problem of checking if a finite-state transducer is robust
to uncertainty in its input. Our notion of robustness is based on the analytic
notion of Lipschitz continuity --- a transducer is K-(Lipschitz) robust if the
perturbation in its output is at most K times the perturbation in its input. We
quantify input and output perturbation using similarity functions. We show that
K-robustness is undecidable even for deterministic transducers. We identify a
class of functional transducers, which admits a polynomial time
automata-theoretic decision procedure for K-robustness. This class includes
Mealy machines and functional letter-to-letter transducers. We also study
K-robustness of nondeterministic transducers. Since a nondeterministic
transducer generates a set of output words for each input word, we quantify
output perturbation using set-similarity functions. We show that K-robustness
of nondeterministic transducers is undecidable, even for letter-to-letter
transducers. We identify a class of set-similarity functions which admit
decidable K-robustness of letter-to-letter transducers.Comment: In FSTTCS 201
Top-down tree transducers with regular look-ahead
Top-down tree transducers with regular look-ahead are introduced. It is shown how these can be decomposed and composed, and how this leads to closure properties of surface sets and tree transformation languages. Particular attention is paid to deterministic tree transducers
Which Classes of Origin Graphs Are Generated by Transducers.
We study various models of transducers equipped with origin information. We consider the semantics of these models as particular graphs, called origin graphs, and we characterise the families of such graphs recognised by streaming string transducers
Multi-Script Morphological Transducers And Transcribers For Seven Turkic Languages
This paper describes ongoing work to augment morphological transducers for seven Turkic languages with support for multiple scripts each, as well as respective IPA transcription systems. Evaluation demonstrates that our approach yields coverage equivalent to or not much lower than that of the base transducers
Continuity of Functional Transducers: A Profinite Study of Rational Functions
A word-to-word function is continuous for a class of languages~
if its inverse maps _languages to~. This notion
provides a basis for an algebraic study of transducers, and was integral to the
characterization of the sequential transducers computable in some circuit
complexity classes.
Here, we report on the decidability of continuity for functional transducers
and some standard classes of regular languages. To this end, we develop a
robust theory rooted in the standard profinite analysis of regular languages.
Since previous algebraic studies of transducers have focused on the sole
structure of the underlying input automaton, we also compare the two algebraic
approaches. We focus on two questions: When are the automaton structure and the
continuity properties related, and when does continuity propagate to
superclasses
Ultrasonic bone densitometer
A device, for measuring the density of a bone structure so as to monitor the calcium content, is described. A pair of opposed spaced ultrasonic transducers are held within a clamping apparatus closely adjacent the bone being analyzed. These ultrasonic transducers incude piezoelectric crystals shaped to direct signals through the bone encompassed in the heel and finger of the subject being tested. A pulse generator is coupled to one of the transducers and generates an electric pulse for causing the transducers to generate an ultrasonic sound wave which is directed through the bone structure to the other transducer. An electric circuit, including an amplifier and a bandpass filter couples the signals from the receiver transducer back to the pulse generator for retriggering the pulse generator at a frequency proportional to the duration that the ultrasonic wave takes to travel through the bone structure being examined
Miniature telemetry system accurately measures pressure
Miniature, low power, telemetry system that can be used with commercially available strain gage pressure transducers accurately measures pressure with a small implantable pressure cell and transmitter. The system has been used to date only with pressure transducers, but the circuit is equally applicable to any measurement using a strain gage sensor
- …
